1,810 research outputs found

    Non-Relativistic Gravitation: From Newton to Einstein and Back

    Full text link
    We present an improvement to the Classical Effective Theory approach to the non-relativistic or Post-Newtonian approximation of General Relativity. The "potential metric field" is decomposed through a temporal Kaluza-Klein ansatz into three NRG-fields: a scalar identified with the Newtonian potential, a 3-vector corresponding to the gravito-magnetic vector potential and a 3-tensor. The derivation of the Einstein-Infeld-Hoffmann Lagrangian simplifies such that each term corresponds to a single Feynman diagram providing a clear physical interpretation. Spin interactions are dominated by the exchange of the gravito-magnetic field. Leading correction diagrams corresponding to the 3PN correction to the spin-spin interaction and the 2.5PN correction to the spin-orbit interaction are presented.Comment: 10 pages, 3 figures. v2: published version. v3: Added a computation of Einstein-Infeld-Hoffmann in higher dimensions within our improved ClEFT which partially confirms and partially corrects a previous computation. See notes added at end of introductio

    Magic wavelengths for the 5s−18s5s-18s transition in rubidium

    Get PDF
    Magic wavelengths, for which there is no differential ac Stark shift for the ground and excited state of the atom, allow trapping of excited Rydberg atoms without broadening the optical transition. This is an important tool for implementing quantum gates and other quantum information protocols with Rydberg atoms, and reliable theoretical methods to find such magic wavelengths are thus extremely useful. We use a high-precision all-order method to calculate magic wavelengths for the 5s−18s5s-18s transition of rubidium, and compare the calculation to experiment by measuring the light shift for atoms held in an optical dipole trap at a range of wavelengths near a calculated magic value

    Next to leading order spin-orbit effects in the motion of inspiralling compact binaries

    Full text link
    Using effective field theory (EFT) techniques we calculate the next-to-leading order (NLO) spin-orbit contributions to the gravitational potential of inspiralling compact binaries. We use the covariant spin supplementarity condition (SSC), and explicitly prove the equivalence with previous results by Faye et al. in arXiv:gr-qc/0605139. We also show that the direct application of the Newton-Wigner SSC at the level of the action leads to the correct dynamics using a canonical (Dirac) algebra. This paper then completes the calculation of the necessary spin dynamics within the EFT formalism that will be used in a separate paper to compute the spin contributions to the energy flux and phase evolution to NLO.Comment: 25 pages, 4 figures, revtex4. v2: minor changes, refs. added. To appear in Class. Quant. Gra

    Effect of pH and temperature on phytase and biomass production by submerged fermentation with Aspergillus niger var. phoenicis URM 4924

    Get PDF
    Phytase production and biomass was evaluated in present work by submerged fermentation with Aspergillus niger var. phoenicis URM 4924. Experimental assays were done under different conditions of pH (4.0 to 8.0) and temperature (25 to 35 ºC), and the influence of these variables on the responses was studied through a 22 central composite design and response surface methodology. Phytase and biomass production were affected by the pH and temperature used during submerged fermentation. Phytase activity was increased in up to 7.8-fold (from 1.04 to 8.09 U/mL) and the ergosterol content was increased in up to 38-fold (from 9.3 to 354.09 μg/mL). The maximum values of both responses were achieved when using pH 4.0 and 30 ºC

    Reconstruction of protein structures from a vectorial representation

    Full text link
    We show that the contact map of the native structure of globular proteins can be reconstructed starting from the sole knowledge of the contact map's principal eigenvector, and present an exact algorithm for this purpose. Our algorithm yields a unique contact map for all 221 globular structures of PDBselect25 of length N≤120N \le 120. We also show that the reconstructed contact maps allow in turn for the accurate reconstruction of the three-dimensional structure. These results indicate that the reduced vectorial representation provided by the principal eigenvector of the contact map is equivalent to the protein structure itself. This representation is expected to provide a useful tool in bioinformatics algorithms for protein structure comparison and alignment, as well as a promising intermediate step towards protein structure prediction.Comment: 4 pages, 1 figur

    Numerical study of a thrombus migration risk in aneurysm after coil embolization in patient cases: FSI modelling

    Get PDF
    Purpose There are still many challenges for modelling a thrombus migration process in aneurysms. The main novelty of the present research lies in the modelling of aneurysm clot migration process in a realistic cerebral aneurysm, and the analysis of forces sufered by clots inside an aneurysm, through transient FSI simulations. Methods The blood fow has been modelled using a Womersley velocity profle, and following the Carreau viscosity model. Hyperelastic Ogden model has been used for clot and isotropic linear elastic model for the artery walls. The FSI coupled model was implemented in ANSYS® software. The hemodynamic forces sufered by the clot have been quantifed using eight diferent clot sizes and positions inside a real aneurysm. Results The obtained results have shown that it is almost impossible for clots adjacent to aneurysm walls, to leave the aneurysm. Nevertheless, in clots positioned in the centre of the aneurysm, there is a real risk of clot migration. The risk of migration of a typical post-coiling intervention clot in an aneurysm, in contact with the wall and occupying a signifcant percentage of its volume is very low in the case studied, even in the presence of abnormally intense events, associated with sneezes or impacts. Conclusions The proposed methodology allows evaluating the clot migration risk, vital for evaluating the progress after endovascular interventions, it is a step forward in the personalized medicine, patient follow-up, and helping the medical team deciding the optimal treatment.Universidade de Vigo/CISU

    Azimuthally polarized spatial dark solitons: exact solutions of Maxwell's equations in a Kerr medium

    Get PDF
    Spatial Kerr solitons, typically associated with the standard paraxial nonlinear Schroedinger equation, are shown to exist to all nonparaxial orders, as exact solutions of Maxwell's equations in the presence of vectorial Kerr effect. More precisely, we prove the existence of azimuthally polarized, spatial, dark soliton solutions of Maxwell's equations, while exact linearly polarized (2+1)-D solitons do not exist. Our ab initio approach predicts the existence of dark solitons up to an upper value of the maximum field amplitude, corresponding to a minimum soliton width of about one fourth of the wavelength.Comment: 4 pages, 4 figure
    • …
    corecore