62 research outputs found

    Sourcing Flexibility, Spot Trading, and Procurement Contract Structure

    Get PDF
    We analyze the structure and pricing of option contracts for an industrial good in the presence of spot trading. We combine the analysis of spot trading and buyers' disparate private valuations for different suppliers' products, and we jointly endogenize the determination of three major dimensions in contract design: (i) sales contracts versus options contracts, (ii) flat-price versus volume-dependent contracts, and (iii) volume discounts versus volume premia. We build a model in which a supplier of an industrial good transacts with a manufacturer who uses the supplier's product to produce an end good with an uncertain demand. We show that, consistent with industry observations, volume-dependent optimal sales contracts always demonstrate volume discounts (i.e., involve concave pricing). However, options are more complex agreements, and optimal option contracts can involve both volume discounts and volume premia. Three major contract structures commonly emerge in optimality. First, if the seller has a high discount rate relative to the buyer and the seller's production costs or the production capacity is low, the optimal contracts tend to be flat-price sales contracts. Second, when the seller has a relatively high discount rate compared to the buyer but production costs or production capacity are high, the optimal contracts are sales contracts with volume discounts. Third, if the buyer's discount rate is high relative to the seller's, then the optimal contracts tend to be volume-dependent options contracts and can involve both volume discounts and volume premia. However, when the seller's production capacity is sufficiently low, it is possible to observe flat-price option contracts. Furthermore, we provide links between production and spot market characteristics, contract design, and efficiency.National Science Foundation (U.S.) (contract CMMI-0758069)National Science Foundation (U.S.) (contract DMI-0245352

    Psychosis and the level of mood incongruence in Bipolar Disorder are related to genetic liability for Schizophrenia

    Get PDF
    Abstract Importance Bipolar disorder (BD) overlaps schizophrenia in its clinical presentation and genetic liability. Alternative approaches to patient stratification beyond current diagnostic categories are needed to understand the underlying disease processes/mechanisms. Objectives To investigate the relationship between common-variant liability for schizophrenia, indexed by polygenic risk scores (PRS) and psychotic presentations of BD, using clinical descriptions which consider both occurrence and level of mood-incongruent psychotic features. Design Case-control design: using multinomial logistic regression, to estimate differential associations of PRS across categories of cases and controls. Settings & Participants 4399 BDcases, mean [sd] age-at-interview 46[12] years, of which 2966 were woman (67%) from the BD Research Network (BDRN) were included in the final analyses, with data for 4976 schizophrenia cases and 9012 controls from the Type-1 diabetes genetics consortium and Generation Scotland included for comparison. Exposure Standardised PRS, calculated using alleles with an association p-value threshold < 0.05 in the second Psychiatric Genomics Consortium genome-wide association study of schizophrenia, adjusted for the first 10 population principal components and genotyping-platform. Main outcome measure Multinomial logit models estimated PRS associations with BD stratified by (1) Research Diagnostic Criteria (RDC) BD subtypes (2) Lifetime occurrence of psychosis.(3) Lifetime mood-incongruent psychotic features and (4) ordinal logistic regression examined PRS associations across levels of mood-incongruence. Ratings were derived from the Schedule for Clinical Assessment in Neuropsychiatry interview (SCAN) and the Bipolar Affective Disorder Dimension Scale (BADDS). Results Across clinical phenotypes, there was an exposure-response gradient with the strongest PRS association for schizophrenia (RR=1.94, (95% C.I. 1.86, 2.01)), then schizoaffective BD (RR=1.37, (95% C.I. 1.22, 1.54)), BD I (RR= 1.30, (95% C.I. 1.24, 1.36)) and BD II (RR=1.04, (95% C.I. 0.97, 1.11)). Within BD cases, there was an effect gradient, indexed by the nature of psychosis, with prominent mood-incongruent psychotic features having the strongest association (RR=1.46, (95% C.I. 1.36, 1.57)), followed by mood-congruent psychosis (RR= 1.24, (95% C.I. 1.17, 1.33)) and lastly, BD cases with no history of psychosis (RR=1.09, (95% C.I. 1.04, 1.15)). Conclusion We show for the first time a polygenic-risk gradient, across schizophrenia and bipolar disorder, indexed by the occurrence and level of mood-incongruent psychotic symptoms

    Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease

    Get PDF
    Sickle cell disease (SCD) is the most common serious monogenic disease with 300,000 births annually worldwide. SCD is an autosomal recessive disease resulting from a single point mutation in codon six of the β-globin gene (HBB). Ex vivo β-globin gene correction in autologous patient-derived hematopoietic stem and progenitor cells (HSPCs) may potentially provide a curative treatment for SCD. We previously developed a CRISPR-Cas9 gene targeting strategy that uses high-fidelity Cas9 precomplexed with chemically modified guide RNAs to induce recombinant adeno-associated virus serotype 6 (rAAV6)-mediated HBB gene correction of the SCD-causing mutation in HSPCs. Here, we demonstrate the preclinical feasibility, efficacy, and toxicology of HBB gene correction in plerixafor-mobilized CD34+ cells from healthy and SCD patient donors (gcHBB-SCD). We achieved up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing. After transplant into immunodeficient NSG mice, 20% gene correction was achieved with multilineage engraftment. The long-term safety, tumorigenicity, and toxicology study demonstrated no evidence of abnormal hematopoiesis, genotoxicity, or tumorigenicity from the engrafted gcHBB-SCD drug product. Together, these preclinical data support the safety, efficacy, and reproducibility of this gene correction strategy for initiation of a phase 1/2 clinical trial in patients with SCD

    Rapid “Open-Source” Engineering of Customized Zinc-Finger Nucleases for Highly Efficient Gene Modification

    Get PDF
    Summary—Custom-made zinc-finger nucleases (ZFNs) can induce targeted genome modifications with high efficiency in cell types including Drosophila, C. elegans, plants, and humans. A bottleneck in the application of ZFN technology has been the generation of highly specific engineered zincfinger arrays. Here we describe OPEN (Oligomerized Pool ENgineering), a rapid, publicly available strategy for constructing multi-finger arrays, which we show is more effective than the previously published modular assembly method. We used OPEN to construct 37 highly active ZFN pairs which induced targeted alterations with high efficiencies (1 to 50%) at 11 different target sites located within three endogenous human genes (VEGF-A, HoxB13, CFTR), an endogenous plant gene (tobacco SuRA), and a chromosomally-integrated EGFP reporter gene. In summary, OPEN provides an “opensource” method for rapidly engineering highly active zinc-finger arrays, thereby enabling broader practice, development, and application of ZFN technology for biological research and gene therapy

    Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases

    Full text link
    Artificial endonucleases consisting of a Fokl cleavage domain tethered to engineered zinc-finger DNA-binding proteins have proven useful for stimulating homologous recombination in a variety of cell types. Because the catalytic domain of zinc-finger nucleases (ZFNs) must dimerize to become active, two subunits are typically assembled as heterodimers at the cleavage site. The use of ZFNs is often associated with significant cytotoxicity, presumably due to cleavage at off- target sites. Here we describe a structure- based approach to reducing off- target cleavage. Using in silico protein modeling and energy calculations, we increased the specificity of target site cleavage by preventing homodimerization and lowering the dimerization energy. Cell-based recombination assays confirmed that the modified ZFNs were as active as the original ZFNs but elicit significantly less genotoxicity. The improved safety profile may facilitate therapeutic application of the ZFN technology

    The molecular and cellular signatures of the mouse eminentia thalami support its role as a signalling centre in the developing forebrain

    Get PDF
    The mammalian eminentia thalami (EmT) (or thalamic eminence) is an embryonic forebrain structure of unknown function. Here, we examined the molecular and cellular properties of the mouse EmT. We first studied mRNA expression of signalling molecules and found that the EmT is a structure, rich in expression of secreted factors, with Wnts being the most abundantly detected. We then examined whether EmT tissue could induce cell fate changes when grafted ectopically. For this, we transplanted EmT tissue from a tau-GFP mouse to the ventral telencephalon of a wild type host, a telencephalic region where Wnt signalling is not normally active but which we showed in culture experiments is competent to respond to Wnts. We observed that the EmT was able to induce in adjacent ventral telencephalic cells ectopic expression of Lef1, a transcriptional activator and a target gene of the Wnt/β-catenin pathway. These Lef1-positive;GFP-negative cells expressed the telencephalic marker Foxg1 but not Ascl1, which is normally expressed by ventral telencephalic cells. These results suggest that the EmT has the capacity to activate Wnt/β-catenin signalling in the ventral telencephalon and to suppress ventral telencephalic gene expression. Altogether, our data support a role of the EmT as a signalling centre in the developing mouse forebrain. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00429-015-1127-3) contains supplementary material, which is available to authorized users

    MOF and Histone H4 Acetylation at Lysine 16 Are Critical for DNA Damage Response and Double-Strand Break Repair▿ †

    Get PDF
    The human MOF gene encodes a protein that specifically acetylates histone H4 at lysine 16 (H4K16ac). Here we show that reduced levels of H4K16ac correlate with a defective DNA damage response (DDR) and double-strand break (DSB) repair to ionizing radiation (IR). The defect, however, is not due to altered expression of proteins involved in DDR. Abrogation of IR-induced DDR by MOF depletion is inhibited by blocking H4K16ac deacetylation. MOF was found to be associated with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a protein involved in nonhomologous end-joining (NHEJ) repair. ATM-dependent IR-induced phosphorylation of DNA-PKcs was also abrogated in MOF-depleted cells. Our data indicate that MOF depletion greatly decreased DNA double-strand break repair by both NHEJ and homologous recombination (HR). In addition, MOF activity was associated with general chromatin upon DNA damage and colocalized with the synaptonemal complex in male meiocytes. We propose that MOF, through H4K16ac (histone code), has a critical role at multiple stages in the cellular DNA damage response and DSB repair
    corecore