28,091 research outputs found

    Ketamine and remote hyperalgesia

    Get PDF

    A Deep Multicolor Survey I. Imaging Observations and Catalog of Stellar Objects

    Get PDF
    We have used the KPNO 4-meter Mayall telescope to image 0.83 square degrees of sky in six fields at high galactic latitude in six filters spanning 3000-10000\AA\ to magnitude limits ranging from 22.1 to 23.8. We have assembled a catalog of 21,375 stellar objects detected in the fields for use primarily in conducting a multicolor search for quasars. This paper describes the data reduction techniques used on the CCD data, the methods used to construct the stellar object catalog, and the simulations performed to understand its completeness and contamination.Comment: To Appear in ApJ Supplement, 1996. 168k uuencoded gunzipped tarred tex file (requires aas2pp4.sty and tighten.sty) and 4 PostScript figures. Also available at http://astro.as.arizona.edu/~pathall/astro.html#preprint

    The Cauchy convergence of T and P-approximant templates for test-mass Kerr binary systems

    Full text link
    In this work we examine the Cauchy convergence of both post-Newtonian (T-approximant) and re-summed post-Newtonian (P-approximant) templates for the case of a test-mass orbiting a Kerr black hole along a circular equatorial orbit. The Cauchy criterion demands that the inner product between the nn and n+1n+1 order approximation approaches unity, as we increase the order of approximation. In previous works, it has been shown that we achieve greater fitting factors and better parameter estimation using the P-approximant templates for both Schwarzschild and Kerr black holes. In this work, we show that the P-approximant templates also display a faster Cauchy convergence making them a superior template to the standard post-Newtonian templates.Comment: 5 pages, Replaced with shortened published versio

    Detecting gravitational waves from test-mass bodies orbiting a Kerr black hole with P-approximant templates

    Full text link
    In this study we apply post-Newtonian (T-approximants) and resummed post-Newtonian (P-approximants) to the case of a test-particle in equatorial orbit around a Kerr black hole. We compare the two approximants by measuring their effectualness (i.e. larger overlaps with the exact signal), and faithfulness (i.e. smaller biases while measuring the parameters of the signal) with the exact (numerical) waveforms. We find that in the case of prograde orbits, T-approximant templates obtain an effectualness of ~0.99 for spins q < 0.75. For 0.75 < q < 0.95, the effectualness drops to about 0.82. The P-approximants achieve effectualness of > 0.99 for all spins up to q = 0.95. The bias in the estimation of parameters is much lower in the case of P-approximants than T-approximants. We find that P-approximants are both effectual and faithful and should be more effective than T-approximants as a detection template family when q > 0. For q < 0 both T- and P-approximants perform equally well so that either of them could be used as a detection template family. However, for parameter estimation, the P-approximant templates still outperforms the T-approximants.Comment: 11 Pages - 9 figures. Accepted for publication. Proceedings of GWDAW 9. Special edition of Classical and Quantum Gravit

    Public Participation Organizations and Open Policy:A Constitutional Moment for British Democracy?

    Get PDF
    This article builds on work in Science and Technology Studies and cognate disciplines concerning the institutionalization of public engagement and participation practices. It describes and analyses ethnographic qualitative research into one “organization of participation,” the UK government–funded Sciencewise program. Sciencewise’s interactions with broader political developments are explored, including the emergence of “open policy” as a key policy object in the UK context. The article considers what the new imaginary of openness means for institutionalized forms of public participation in science policymaking, asking whether this is illustrative of a “constitutional moment” in relations between society and science policymaking

    Strong Shock Waves and Nonequilibrium Response in a One-dimensional Gas: a Boltzmann Equation Approach

    Full text link
    We investigate the nonequilibrium behavior of a one-dimensional binary fluid on the basis of Boltzmann equation, using an infinitely strong shock wave as probe. Density, velocity and temperature profiles are obtained as a function of the mixture mass ratio \mu. We show that temperature overshoots near the shock layer, and that heavy particles are denser, slower and cooler than light particles in the strong nonequilibrium region around the shock. The shock width w(\mu), which characterizes the size of this region, decreases as w(\mu) ~ \mu^{1/3} for \mu-->0. In this limit, two very different length scales control the fluid structure, with heavy particles equilibrating much faster than light ones. Hydrodynamic fields relax exponentially toward equilibrium, \phi(x) ~ exp[-x/\lambda]. The scale separation is also apparent here, with two typical scales, \lambda_1 and \lambda_2, such that \lambda_1 ~ \mu^{1/2} as \mu-->0$, while \lambda_2, which is the slow scale controlling the fluid's asymptotic relaxation, increases to a constant value in this limit. These results are discussed at the light of recent numerical studies on the nonequilibrium behavior of similar 1d binary fluids.Comment: 9 pages, 8 figs, published versio
    • …
    corecore