5,481 research outputs found

    Counterparty Credit Limits: An Effective Tool for Mitigating Counterparty Risk?

    Full text link
    A counterparty credit limit (CCL) is a limit imposed by a financial institution to cap its maximum possible exposure to a specified counterparty. Although CCLs are designed to help institutions mitigate counterparty risk by selective diversification of their exposures, their implementation restricts the liquidity that institutions can access in an otherwise centralized pool. We address the question of how this mechanism impacts trade prices and volatility, both empirically and via a new model of trading with CCLs. We find empirically that CCLs cause little impact on trade. However, our model highlights that in extreme situations, CCLs could serve to destabilize prices and thereby influence systemic risk

    Wild Horses off Private Lands

    Get PDF

    Freight Rates May Discriminate against Recycled Materials

    Get PDF

    In-vivo analysis of Protec™ and β-glucan supplementation on innate immune performance and intestinal health of rainbow trout

    Get PDF
    Acknowledgements Many thanks to the Aquarium team at the University of Aberdeen for their continued support, knowledge, and training in fish husbandry. Lab technical support by Dr Dawn Shewring was greatly appreciated. The authors gratefully acknowledge the University of Aberdeen Microscopy and Histology Core Facility for their support & assistance in this work. Many thanks to Dr Tiehui Wang for supplying the recombinant IL-1β. Funding This work was funded by the University of Aberdeen and Skretting AI.Peer reviewedPublisher PD

    Modulational instability in a layered Kerr medium: Theory and Experiment

    Get PDF
    We present the first experimental investigation of modulational instability in a layered Kerr medium. The particularly interesting and appealing feature of our configuration, consisting of alternating glass-air layers, is the piecewise-constant nature of the material properties, which allows a theoretical linear stability analysis leading to a Kronig-Penney equation whose forbidden bands correspond to the modulationally unstable regimes. We find very good {\it quantitative} agreement between theoretical, numerical, and experimental diagnostics of the modulational instability. Because of the periodicity in the evolution variable arising from the layered medium, there are multiple instability regions rather than just one as in the uniform medium.Comment: 4 pages, 4 figures, contains experimental + computational + theoretical results, to appear in Physical Review Letter

    Immune responses to prebiotics in farmed salmonid fish : How transcriptomic approaches help interpret responses

    Get PDF
    Funding This work was supported by the University of Aberdeen and Skretting Ltd. Open access via Elsevier agreementPeer reviewedPublisher PD

    Feedback control architecture and the bacterial chemotaxis network.

    Get PDF
    PMCID: PMC3088647This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt) the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance

    Just how difficult can it be counting up R&D funding for emerging technologies (and is tech mining with proxy measures going to be any better?)

    Get PDF
    Decision makers considering policy or strategy related to the development of emerging technologies expect high quality data on the support for different technological options. A natural starting point would be R&D funding statistics. This paper explores the limitations of such aggregated data in relation to the substance and quantification of funding for emerging technologies. Using biotechnology as an illustrative case, we test the utility of a novel taxonomy to demonstrate the endemic weaknesses in the availability and quality of data from public and private sources. Using the same taxonomy, we consider the extent to which tech-mining presents an alternative, or potentially complementary, way to determine support for emerging technologies using proxy measures such as patents and scientific publications
    corecore