51 research outputs found

    Real-time observation of a coherent lattice transformation into a high-symmetry phase

    Full text link
    Excursions far from their equilibrium structures can bring crystalline solids through collective transformations including transitions into new phases that may be transient or long-lived. Direct spectroscopic observation of far-from-equilibrium rearrangements provides fundamental mechanistic insight into chemical and structural transformations, and a potential route to practical applications, including ultrafast optical control over material structure and properties. However, in many cases photoinduced transitions are irreversible or only slowly reversible, or the light fluence required exceeds material damage thresholds. This precludes conventional ultrafast spectroscopy in which optical excitation and probe pulses irradiate the sample many times, each measurement providing information about the sample response at just one probe delay time following excitation, with each measurement at a high repetition rate and with the sample fully recovering its initial state in between measurements. Using a single-shot, real-time measurement method, we were able to observe the photoinduced phase transition from the semimetallic, low-symmetry phase of crystalline bismuth into a high-symmetry phase whose existence at high electronic excitation densities was predicted based on earlier measurements at moderate excitation densities below the damage threshold. Our observations indicate that coherent lattice vibrational motion launched upon photoexcitation with an incident fluence above 10 mJ/cm2 in bulk bismuth brings the lattice structure directly into the high-symmetry configuration for tens of picoseconds, after which carrier relaxation and diffusion restore the equilibrium lattice configuration.Comment: 22 pages, 4 figure

    Coherent Phonons in Antimony: an Undergraduate Physical Chemistry Solid-State Ultrafast Laser Spectroscopy Experiment

    Full text link
    Ultrafast laser pump-probe spectroscopy is an important and growing field of physical chemistry that allows the measurement of chemical dynamics on their natural timescales, but undergraduate laboratory courses lack examples of such spectroscopy and the interpretation of the dynamics that occur. Here we develop and implement an ultrafast pump-probe spectroscopy experiment for the undergraduate physical chemistry laboratory course at the University of California Berkeley. The goal of the experiment is to expose students to concepts in solid-state chemistry and ultrafast spectroscopy via classic coherent phonon dynamics principles developed by researchers over multiple decades. The experiment utilizes a modern high-repetition rate 800 nm femtosecond Ti:Sapphire laser, split pulses with a variable time delay, and sensitive detection of transient reflectivity signals. The experiment involves minimal intervention from students and is therefore easy and safe to implement in the laboratory. Students first perform an intensity autocorrelation measurement on the femtosecond laser pulses to obtain their temporal duration. Then, students measure the pump-probe reflectivity of a single-crystal antimony sample to determine the period of coherent phonon oscillations initiated by an ultrafast pulse excitation, which is analyzed by fitting to a sine wave. Due to the disruption of in-person instruction caused by the COVID-19 pandemic, during those semesters students were provided the data they would have obtained during the experiment to analyze at home. Evaluation of student written reports reveals that the learning goals were met, and that students gained an appreciation for the field of ultrafast laser-induced chemistry

    Layer-Resolved Ultrafast XUV Measurement of Hole Transport in a Ni-TiO2-Si Photoanode

    Get PDF
    Metal-oxide-semiconductor junctions are central to most electronic and optoelectronic devices. Here, the element-specificity of broadband extreme ultraviolet (XUV) ultrafast pulses is used to measure the charge transport and recombination kinetics in each layer of a Ni-TiO2-Si junction. After photoexcitation of silicon, holes are inferred to transport from Si to Ni ballistically in ~100 fs, resulting in spectral shifts in the Ni M2,3 XUV edge that are characteristic of holes and the absence of holes initially in TiO2. Meanwhile, the electrons are observed to remain on Si. After picoseconds, the transient hole population on Ni is observed to back-diffuse through the TiO2, shifting the Ti spectrum to higher oxidation state, followed by electron-hole recombination at the Si-TiO2 interface and in the Si bulk. Electrical properties, such as the hole diffusion constant in TiO2 and the initial hole mobility in Si, are fit from these transient spectra and match well with values reported previously

    Layer-resolved ultrafast extreme ultraviolet measurement of hole transport in a Ni-TiO₂-Si photoanode

    Get PDF
    Metal oxide semiconductor junctions are central to most electronic and optoelectronic devices, but ultrafast measurements of carrier transport have been limited to device-average measurements. Here, charge transport and recombination kinetics in each layer of a Ni-TiO₂-Si junction is measured using the element specificity of broadband extreme ultraviolet (XUV) ultrafast pulses. After silicon photoexcitation, holes are inferred to transport from Si to Ni ballistically in ~100 fs, resulting in characteristic spectral shifts in the XUV edges. Meanwhile, the electrons remain on Si. After picoseconds, the transient hole population on Ni is observed to back-diffuse through the TiO₂, shifting the Ti spectrum to a higher oxidation state, followed by electron-hole recombination at the Si-TiO₂ interface and in the Si bulk. Electrical properties, such as the hole diffusion constant in TiO₂ and the initial hole mobility in Si, are fit from these transient spectra and match well with values reported previously

    Photoexcited Small Polaron Formation in Goethite (α-FeOOH) Nanorods Probed by Transient Extreme Ultraviolet Spectroscopy

    Get PDF
    Small polaron formation limits the mobility and lifetimes of photoexcited carriers in metal oxides. As the ligand field strength increases, the carrier mobility decreases, but the effect on the photoexcited small polaron formation is still unknown. Extreme ultraviolet transient absorption spectroscopy is employed to measure small polaron formation rates and probabilities in goethite (α-FeOOH) crystalline nanorods at pump photon energies from 2.2 to 3.1 eV. The measured polaron formation time increases with excitation photon energy from 70 ± 10 fs at 2.2 eV to 350 ± 30 fs at 2.6 eV, whereas the polaron formation probability (85 ± 10%) remains constant. By comparison to hematite (α-Fe_2O_3), an oxide analogue, the role of ligand composition and metal center density in small polaron formation time is discussed. This work suggests that incorporating small changes in ligands and crystal structure could enable the control of photoexcited small polaron formation in metal oxides

    Electron Thermalization and Relaxation in Laser-Heated Nickel by Few-Femtosecond Core-Level Transient Absorption Spectroscopy

    Full text link
    Direct measurements of photoexcited carrier dynamics in nickel are made using few-femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy at the nickel M2,3_{2,3} edge. It is observed that the core-level absorption lineshape of photoexcited nickel can be described by a Gaussian broadening (σ\sigma) and a red shift (ωs\omega_{s}) of the ground state absorption spectrum. Theory predicts, and the experimental results verify that after initial rapid carrier thermalization, the electron temperature increase (ΔT\Delta T) is linearly proportional to the Gaussian broadening factor σ\sigma, providing quantitative real-time tracking of the relaxation of the electron temperature. Measurements reveal an electron cooling time for 50 nm thick polycrystalline nickel films of 640±\pm80 fs. With hot thermalized carriers, the spectral red shift exhibits a power-law relationship with the change in electron temperature of ωsΔT1.5\omega_{s}\propto\Delta T^{1.5}. Rapid electron thermalization via carrier-carrier scattering accompanies and follows the nominal 4 fs photoexcitation pulse until the carriers reach a quasi-thermal equilibrium. Entwined with a <6 fs instrument response function, carrier thermalization times ranging from 34 fs to 13 fs are estimated from experimental data acquired at different pump fluences and it is observed that the electron thermalization time decreases with increasing pump fluence. The study provides an initial example of measuring electron temperature and thermalization in metals in real time with XUV light, and it lays a foundation for further investigation of photoinduced phase transitions and carrier transport in metals with core-level absorption spectroscopy.Comment: 20 pages, 8 figure
    corecore