3 research outputs found

    W.: A parallel gravitational n-body kernel

    No full text
    Abstract We describe source code level parallelization for the kira direct gravitational Nbody integrator, the workhorse of the starlab production environment for simulating dense stellar systems. The parallelization strategy, called "j-parallelization", involves the partition of the computational domain by distributing all particles in the system among the available processors. Partial forces on the particles to be advanced are calculated in parallel by their parent processors, and are then summed in a final global operation. Once total forces are obtained, the computing elements proceed to the computation of their particle trajectories. We report the results of timing measurements on four different parallel computers, and compare them with theoretical predictions. The computers employ either a high-speed interconnect, a NUMA architecture to minimize the communication overhead or are distributed in a grid. The code scales well in the domain tested, which ranges from 1024 -65536 stars on 1 -128 processors, providing satisfactory speedup. Running the production environment on a grid becomes inefficient for more than 60 processors distributed across three sites

    Kinetic Monte Carlo modelling of dipole blockade in Rydberg excitation experiment

    Full text link
    We present a method to model the interaction and the dynamics of atoms excited to Rydberg states. We show a way to solve the optical Bloch equations for laser excitation of the frozen gas in good agreement with the experiment. A second method, the Kinetic Monte Carlo method gives an exact solution of rate equations. Using a simple N-body integrator (Verlet), we are able to describe dynamical processes in space and time. Unlike more sophisticated methods, the Kinetic Monte Carlo simulation offers the possibility of numerically following the evolution of tens of thousands of atoms within a reasonable computation time. The Kinetic Monte Carlo simulation gives good agreement with dipole-blockade type of experiment. The role of ions and the individual particle effects are investigated.Comment: 23 pages. Submitted to New Journal of Physic
    corecore