1,394 research outputs found

    Bebida contendo abacaxi (Ananas comosus) e beterraba (Beta vulgaris) para crianças: tratar termicamente ou não?

    Get PDF
    Edição dos Resumos do VI Congresso Latinoamericano e XII Congresso Brasileiro de Higienistas de Alimentos, II Encontro Nacional de Vigilância das Zoonoses, IV Encontro do Sistema Brasileiro de Inspeção de Produtos de Origem Animal, Gramado, abr. 2013

    Time scales in shear banding of wormlike micelles

    Get PDF
    Transient stress and birefringence measurements are performed on wormlike micellar solutions that "shear band", i.e. undergo flow-induced coexistence of states of different viscosities along a constant stress "plateau". Three well-defined relaxation times are found after a strain rate step between two banded flow states on the stress plateau. Using the Johnson-Segalman model, we relate these time scales to three qualitatively different stages in the evolution of the bands and the interface between them: band destabilization, reconstruction of the interface, and travel of the fully formed interface. The longest timescale is then used to estimate the magnitude of the (unknown) "gradient" terms that must be added to constitutive relations to explain the history independence of the steady flow and the plateau stress selection

    Dynamic Fluctuation Phenomena in Double Membrane Films

    Full text link
    Dynamics of double membrane films is investigated in the long-wavelength limit including the overdamped squeezing mode. We demonstrate that thermal fluctuations essentially modify the character of the mode due to its nonlinear coupling to the transversal shear hydrodynamic mode. The corresponding Green function acquires as a function of the frequency a cut along the imaginary semi-axis. Fluctuations lead to increasing the attenuation of the squeezing mode it becomes larger than the `bare' value.Comment: 7 pages, Revte

    HerMES: the rest-frame UV emission and a lensing model for the z= 6.34 luminous dusty starburst galaxy HFLS3

    Get PDF
    We discuss the rest-frame ultraviolet emission from the starbursting galaxy HFLS3 at a redshift of 6.34. The galaxy was discovered in Herschel/SPIRE data due to its red color in the submillimeter wavelengths from 250 to 500 μm. Keck/NIRC2 K s -band adaptive optics imaging data showed two potential near-IR counterparts near HFLS3. Previously, the northern galaxy was taken to be in the foreground at z = 2.1, while the southern galaxy was assumed to be HFLS3's near-IR counterpart. The recently acquired Hubble/WFC3 and Advanced Camera for Surveys (ACS) imaging data show conclusively that both optically bright galaxies are in the foreground at z < 6. A new lensing model based on the Hubble imaging data and the millimeter-wave continuum emission yields a magnification factor of 2.2 ± 0.3, with a 95% confidence upper limit on the magnification of 3.5. When corrected for lensing, the instantaneous star formation rate is 1320 M ☉ yr–1, with the 95% confidence lower limit around 830 M ☉ yr–1. The dust and stellar masses of HFLS3 from the same spectral energy distribution (SED) models are at the level of 3 × 108 M ☉ and ~5 × 1010 M ☉, respectively, with large systematic uncertainties on assumptions related to the SED model. With Hubble/WFC3 images, we also find diffuse near-IR emission about 0.5 arcsec (~3 kpc) to the southwest of HFLS3 that remains undetected in the ACS imaging data. The emission has a photometric redshift consistent with either z ~ 6 or a dusty galaxy template at z ~ 2

    Understanding the core density profile in TCV H-mode plasmas

    Full text link
    Results from a database analysis of H-mode electron density profiles on the Tokamak \`a Configuration Variable (TCV) in stationary conditions show that the logarithmic electron density gradient increases with collisionality. By contrast, usual observations of H-modes showed that the electron density profiles tend to flatten with increasing collisionality. In this work it is reinforced that the role of collisionality alone, depending on the parameter regime, can be rather weak and in these, dominantly electron heated TCV cases, the electron density gradient is tailored by the underlying turbulence regime, which is mostly determined by the ratio of the electron to ion temperature and that of their gradients. Additionally, mostly in ohmic plasmas, the Ware-pinch can significantly contribute to the density peaking. Qualitative agreement between the predicted density peaking by quasi-linear gyrokinetic simulations and the experimental results is found. Quantitative comparison would necessitate ion temperature measurements, which are lacking in the considered experimental dataset. However, the simulation results show that it is the combination of several effects that influences the density peaking in TCV H-mode plasmas.Comment: 23 pages, 12 figure
    corecore