44 research outputs found

    Relative amounts of antagonistic splicing factors, hnRNP A1 and ASF/SF2, change during neoplastic lung growth: implications for pre-mRNA processing

    Get PDF
    Pre-mRNA processing is an important mechanism for globally modifying cellular protein composition during tumorigenesis. To understand this process during lung cancer, expression of two key pre-mRNA alternative splicing factors was compared in a mouse model of early lung carcinogenesis and during regenerative growth following reversible lung injury. Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 and alternative splicing factor/splicing factor 2 (ASF/SF2) act antagonistically to modulate splice site selection. Both hnRNP A1 and ASF/SF2 contents rose in adenomas and during injury-induced hyperplasia compared to control lungs, as measured by immunoblotting. While both proteins increased similarly during compensatory hyperplasia, hnRNP A1 increased to a much greater extent than ASF/SF2 in tumors, resulting in a 6-fold increase of the hnRNP A1 to ASF/SF2 ratio. Immunohistochemical analysis showed that hnRNP A1 localized exclusively within tumor nuclei, while ASF/SF2 appeared in cytoplasm and/or nuclei, depending on the growth pattern of the tumor cells. We also demonstrated cancer-associated changes in the pre-mRNA alternative splicing of CD44, a membrane glycoprotein involved in cell-cell and cell-extracellular matrix interactions. hnRNP A1 and ASF/SF2 expression is thus differentially altered in neoplastic lung cells by mechanisms that do not strictly arise from increased cell division. These changes are influenced by tumor histology and may be associated with production of variant CD44 mRNA isoforms

    CALGB 40603 (Alliance): Long-Term Outcomes and Genomic Correlates of Response and Survival After Neoadjuvant Chemotherapy With or Without Carboplatin and Bevacizumab in Triple-Negative Breast Cancer

    Get PDF
    PURPOSECALGB 40603 (NCT00861705), a 2 Ă— 2 randomized phase II trial, demonstrated that adding carboplatin or bevacizumab to weekly paclitaxel (wP) followed by doxorubicin and cyclophosphamide significantly increased the pathologic complete response (pCR) rate in stage II-III triple-negative breast cancer. We now report long-term outcomes (LTOs) and correlative science end points.PATIENTS AND METHODSThe Kaplan-Meier method was used to estimate LTOs in 443 patients who initiated study treatment. Log-rank tests and Cox proportional hazards models evaluated the impact of clinical characteristics, pathologic response, calculated residual cancer burden (RCB) in patients with residual disease (RD), treatment assignment, and dose delivery during wP on LTOs, including event-free survival (EFS). Genomic predictors of treatment response and outcomes were assessed on pretreatment tumor samples by mRNA sequencing.RESULTSAmong baseline characteristics, only the clinical stage was associated with LTOs. At a median follow-up of 7.9 years, LTOs were not significantly improved with either carboplatin or bevacizumab, overall or in patients with basal-like subtype cancers by genomic analysis. Patients with pCR (n = 205, 46.3%) had significantly higher 5-year EFS (85.5% v 56.6%, log-rank P <.0001) and overall survival (87.9% v 63.4%, P <.0001) rates compared with patients with RD, even those with RCB class I. Among clinical and genomic features, evidence of immune activation, including tumor-infiltrating lymphocytes and low B-cell receptor evenness, was associated with pCR and improved EFS.CONCLUSIONDespite higher pCR rates, neither carboplatin nor bevacizumab appeared to improve LTOs although the study was not powered to assess these secondary end points. pCR was associated with superior LTOs even when compared with minimal RD. Markers of immune activation in pretreatment tumor biopsies were independently associated with higher pCR rates and improved survival

    Characterization of the binding of the RNA-binding protein AUF1 to the human AT1 receptor mRNA.

    No full text
    An important mechanism of regulation of the expression of the AT(1) receptors is the modulation of the mRNA stability. AUF1, a human RNA-binding protein, may play an important role. Since AUF1 seems to bind to AU-rich regions of the 3'-untranslated region of the mRNAs, we verified the nucleotide sequence of human AT(1) receptor 3'-untranslated region and we found possible binding sites. In addition we evaluated the expression of the AUF1 protein in human vascular smooth muscle cells: the administration of both isoproterenol and angiotensin II induced a significant increase of total anti-AUF1 immunoreactive isoforms. At the same time angiotensin II induced a significant decrease in the AT(1) receptor mRNA abundance. Moreover, we found that recombinant human AUF1 protein binds to human AT(1) receptor riboprobes. The protein was able to bind to the distal portion of the 3'-untranslated region, and also to the coding region. Since the clinically relevant AT(1) receptor polymorphism is located in the 3'-untranslated region, we created two DNAs, corresponding to the A and C polymorphism, without any differences. Our data demonstrate the presence of AUF1 in human vascular smooth muscle cells and its modulation by activation of the beta-adrenergic and the AT(1) pathways, a and specific binding of AUF1 to the human AT(1) receptor mRNA, suggesting a role of this protein in the modulation of the AT(1) receptor expression
    corecore