5 research outputs found

    Modification of the linker amino acid in the cell-penetrating peptide NickFect55 leads to enhanced pDNA transfection for in vivo applications

    No full text
    Despite numerous efforts over the last three decades, nucleic acid-based therapeutics still lack delivery platforms in the clinical stage. Cell-penetrating peptides (CPPs) may offer solutions as potential delivery vectors. We have previously shown that designing a “kinked” structure in the peptide backbone resulted in a CPP with efficient in vitro transfection properties. Further optimization of the charge distribution in the C-terminal part of the peptide led to potent in vivo activity with the resultant CPP NickFect55 (NF55). Currently, the impact of the linker amino acid was further investigated in the CPP NF55, with the aim to discover potential transfection reagents for in vivo application. Taking into account the expression of the delivered reporter in the lung tissue of mice, and the cell transfection in the human lung adenocarcinoma cell line, the new peptides NF55-Dap and NF55-Dab* have a high potential for delivering nucleic acid-based therapeutics to treat lung associated diseases, such as adenocarcinoma.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)19/20907-72022/3056-

    Cell-Penetrating Peptide and siRNA-Mediated Therapeutic Effects on Endometriosis and Cancer In Vitro Models

    No full text
    Gene therapy is a powerful tool for the development of new treatment strategies for various conditions, by aiming to transport biologically active nucleic acids into diseased cells. To achieve that goal, we used highly potential delivery vectors, cell-penetrating peptides (CPPs), as oligonucleotide carriers for the development of a therapeutic approach for endometriosis and cancer. Despite marked differences, both of these conditions still exhibit similarities, like excessive, uncoordinated, and autonomous cellular proliferation and invasion, accompanied by overlapping gene expression patterns. Thus, in the current study, we investigated the therapeutic effects of CPP and siRNA nanoparticles using in vitro models of benign endometriosis and malignant glioblastoma. We demonstrated that CPPs PepFect6 and NickFect70 are highly effective in transfecting cell lines, primary cell cultures, and three-dimensional spheroids. CPP nanoparticles are capable of inducing siRNA-specific knockdown of therapeutic genes, ribonucleotide reductase subunit M2 (RRM2), and vascular endothelial growth factor (VEGF), which results in the reduction of in vitro cellular proliferation, invasion, and migration. In addition, we proved that it is possible to achieve synergistic suppression of endometriosis cellular proliferation and invasion by combining gene therapy and hormonal treatment approaches by co-administering CPP/siRNA nanoparticles together with the endometriosis-drug danazol. We suggest a novel target, RRM2, for endometriosis therapy and as a proof-of-concept, we propose a CPP-mediated gene therapy approach for endometriosis and cancer

    Predicting Transiently Expressed Protein Yields: Comparison of Transfection Methods in CHO and HEK293

    No full text
    Therapeutic proteins are currently at the apex of innovation in pharmaceutical medicine. However, their industrial production is technically challenging and improved methods for transient transfection of mammalian cell cultures are necessary. We aimed to find a fast, microliter-scale transfection assay that allows the prediction of protein expression in the transient production settings. We used an array of lipid, polymeric and cell-penetrating peptide transfection reagents, and compared their performance in various high throughput transfection assays to their performance in protein (antibody) expression in professional protein-producer cell lines. First, we show that some of the most frequently used microliter-scale transfection efficacy assays fail to predict performance in the protein production in milliliter and liter scale settings. We found that CHO suspension culture post-transfection EGFP(+) population and SEAP quantitation correlate with large-scale protein production, whereas the adhesion culture assays and transfection of pLuc are non-predictive. Second, we demonstrated that cell-penetrating peptide-based transfection achieves significantly higher protein yields compared to PEI and lipoplex methods in both CHO and HEK293 producer cell lines. In this work we demonstrate a CPP-based transient protein expression approach that significantly outperformed the current industry standard workhorse method of PEI

    Aggregation limiting cell-penetrating peptides derived from protein signal sequences

    No full text
    Alzheimer’s disease (AD) is the most common neurodegenerative disease (ND) and the leading cause of dementia. It is characterized by non-linear, genetic-driven pathophysiological dynamics with high heterogeneity in the biological alterations and the causes of the disease. One of the hallmarks of the AD is the progression of plaques of aggregated amyloid-β (Aβ) or neurofibrillary tangles of Tau. Currently there is no efficient treatment for the AD. Nevertheless, several breakthroughs in revealing the mechanisms behind progression of the AD have led to the discovery of possible therapeutic targets. Some of these include the reduction in inflammation in the brain, and, although highly debated, limiting of the aggregation of the Aβ. In this work we show that similarly to the Neural cell adhesion molecule 1 (NCAM1) signal sequence, other Aβ interacting protein sequences, especially derived from Transthyretin, can be used successfully to reduce or target the amyloid aggregation/aggregates in vitro. The modified signal peptides with cell-penetrating properties reduce the Aβ aggregation and are predicted to have anti-inflammatory properties. Furthermore, we show that by expressing the Aβ-EGFP fusion protein, we can efficiently assess the potential for reduction in aggregation, and the CPP properties of peptides in mammalian cells.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)19/20907-72022/3056-

    Amyloid-like self-assembly of a hydrophobic cell-penetrating peptide and its use as a carrier for nucleic acids

    No full text
    Cell-penetrating peptides (CPPs) are a topic subject potentially exploitable for creating new nanotherapeutics for the delivery of bioactive loads. These compounds are often classified into three major categories according to their physicochemical characteristics: cationic, amphiphilic, and hydrophobic. Among them, the group of hydrophobic CPPs has received increasing attention in recent years due to toxicity concerns posed by highly cationic CPPs. The hexapeptide PFVYLI (P: proline, F: phenylalanine, V: valine, Y: tyrosine, L: leucine and I: isoleucine), a fragment derived from the C-terminal portion of α1-antitrypsin, is a prototypal example of hydrophobic CPP. This sequence shows reduced cytotoxicity, capacity of nuclear localization, and its small size readily hints suitability as a building block to construct nanostructured materials. In this study, we examine the self-assembling properties of PFVYLI and investigate its ability to form non-covalent complexes with nucleic acids. By using a combination of biophysical tools including synchrotron small-angle X-ray scattering and atomic force microscopy-based infrared spectroscopy, we discovered that this CPP self-assembles into discrete nanofibrils with remarkable amyloidogenic features. Over the course of days, these fibrils coalesce into rod-like crystals that easily reach the micrometer range. Despite lacking cationic residues in the composition, PFVYLI forms non-covalent complexes with nucleic acids that retain -sheet pairing found in amyloid aggregates. In vitro vectorization experiments performed with double-stranded DNA fragments indicate that complexes promote the internalization of nucleic acids, revealing that tropism toward cell membranes is preserved upon complexation. On the other hand, transfection assays with splice-correction oligonucleotides (SCOs) for luciferase expression show limited bioactivity across a narrow concentration window, suggesting that propensity to form amyloidogenic aggregates may trigger endosomal entrapment. We anticipate that the findings presented here open perspectives for using this archetypical hydrophobic CPP in the fabrication of nanostructured scaffolds, which potentially integrate properties of amyloids and translocation capabilities of CPPs.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)19/20907-
    corecore