54 research outputs found

    Replication independent DNA double-strand break retention may prevent genomic instability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Global hypomethylation and genomic instability are cardinal features of cancers. Recently, we established a method for the detection of DNA methylation levels at sites close to endogenous DNA double strand breaks (EDSBs), and found that those sites have a higher level of methylation than the rest of the genome. Interestingly, the most significant differences between EDSBs and genomes were observed when cells were cultured in the absence of serum. DNA methylation levels on each genomic location are different. Therefore, there are more replication-independent EDSBs (RIND-EDSBs) located in methylated genomic regions. Moreover, methylated and unmethylated RIND-EDSBs are differentially processed. Euchromatins respond rapidly to DSBs induced by irradiation with the phosphorylation of H2AX, Ξ³-H2AX, and these initiate the DSB repair process. During G0, most DSBs are repaired by non-homologous end-joining repair (NHEJ), mediated by at least two distinct pathways; the Ku-mediated and the ataxia telangiectasia-mutated (ATM)-mediated. The ATM-mediated pathway is more precise. Here we explored how cells process methylated RIND-EDSBs and if RIND-EDSBs play a role in global hypomethylation-induced genomic instability.</p> <p>Results</p> <p>We observed a significant number of methylated RIND-EDSBs that are retained within deacetylated chromatin and free from an immediate cellular response to DSBs, the Ξ³-H2AX. When cells were treated with tricostatin A (TSA) and the histones became hyperacetylated, the amount of Ξ³-H2AX-bound DNA increased and the retained RIND-EDSBs were rapidly repaired. When NHEJ was simultaneously inhibited in TSA-treated cells, more EDSBs were detected. Without TSA, a sporadic increase in unmethylated RIND-EDSBs could be observed when Ku-mediated NHEJ was inhibited. Finally, a remarkable increase in RIND-EDSB methylation levels was observed when cells were depleted of ATM, but not of Ku86 and RAD51.</p> <p>Conclusions</p> <p>Methylated RIND-EDSBs are retained in non-acetylated heterochromatin because there is a prolonged time lag between RIND-EDSB production and repair. The rapid cellular responses to DSBs may be blocked by compact heterochromatin structure which then allows these breaks to be repaired by a more precise ATM-dependent pathway. In contrast, Ku-mediated NHEJ can repair euchromatin-associated EDSBs. Consequently, spontaneous mutations in hypomethylated genome are produced at faster rates because unmethylated EDSBs are unable to avoid the more error-prone NHEJ mechanisms.</p

    LINE-1 methylation status of endogenous DNA double-strand breaks

    Get PDF
    DNA methylation and the repair of DNA double-strand breaks (DSBs) are important processes for maintaining genomic integrity. Although DSBs can be produced by numerous agents, they also occur spontaneously as endogenous DSBs (EDSBs). In this study, we evaluated the methylation status of EDSBs to determine if there is a connection between DNA methylation and EDSBs. We utilized interspersed repetitive sequence polymerase chain reaction (PCR), ligation-mediated PCR and combined bisulfite restriction analysis to examine the extent of EDSBs and methylation at long interspersed nuclear element-1 (LINE-1) sequences nearby EDSBs. We tested normal white blood cells and several cell lines derived from epithelial cancers and leukemias. Significant levels of EDSBs were detectable in all cell types. EDSBs were also found in both replicating and non-replicating cells. We found that EDSBs contain higher levels of methylation than the cellular genome. This hypermethylation is replication independent and the methylation was present in the genome at the location prior to the DNA DSB. The differences in methylation levels between EDSBs and the rest of the genome suggests that EDSBs are differentially processed, by production, end-modification, or repair, depending on the DNA methylation status

    LINE-1 methylation patterns of different loci in normal and cancerous cells

    Get PDF
    This study evaluated methylation patterns of long interspersed nuclear element-1 (LINE-1) sequences from 17 loci in several cell types, including squamous cell cancer cell lines, normal oral epithelium (NOE), white blood cells and head and neck squamous cell cancers (HNSCC). Although sequences of each LINE-1 are homologous, LINE-1 methylation levels at each locus are different. Moreover, some loci demonstrate the different methylation levels between normal tissue types. Interestingly, in some chromosomal regions, wider ranges of LINE-1 methylation levels were observed. In cancerous cells, the methylation levels of most LINE-1 loci demonstrated a positive correlation with each other and with the genome-wide levels. Therefore, the loss of genome-wide methylation in cancerous cells occurs as a generalized process. However, different LINE-1 loci showed different incidences of HNSCC hypomethylation, which is a lower methylation level than NOE. Additionally, we report a closer direct association between two LINE-1s in different EPHA3 introns. Finally, hypermethylation of some LINE-1s can be found sporadically in cancer. In conclusion, even though the global hypomethylation process that occurs in cancerous cells can generally deplete LINE-1 methylation levels, LINE-1 methylation can be influenced differentially depending on where the particular sequences are located in the genome

    Hypomethylation of Intragenic LINE-1 Represses Transcription in Cancer Cells through AGO2

    Get PDF
    In human cancers, the methylation of long interspersed nuclear element -1 (LINE-1 or L1) retrotransposons is reduced. This occurs within the context of genome wide hypomethylation, and although it is common, its role is poorly understood. L1s are widely distributed both inside and outside of genes, intragenic and intergenic, respectively. Interestingly, the insertion of active full-length L1 sequences into host gene introns disrupts gene expression. Here, we evaluated if intragenic L1 hypomethylation influences their host gene expression in cancer. First, we extracted data from L1base (http://l1base.molgen.mpg.de), a database containing putatively active L1 insertions, and compared intragenic and intergenic L1 characters. We found that intragenic L1 sequences have been conserved across evolutionary time with respect to transcriptional activity and CpG dinucleotide sites for mammalian DNA methylation. Then, we compared regulated mRNA levels of cells from two different experiments available from Gene Expression Omnibus (GEO), a database repository of high throughput gene expression data, (http://www.ncbi.nlm.nih.gov/geo) by chi-square. The odds ratio of down-regulated genes between demethylated normal bronchial epithelium and lung cancer was high (p<1Eβˆ’27; ORβ€Š=β€Š3.14; 95% CIβ€Š=β€Š2.54–3.88), suggesting cancer genome wide hypomethylation down-regulating gene expression. Comprehensive analysis between L1 locations and gene expression showed that expression of genes containing L1s had a significantly higher likelihood to be repressed in cancer and hypomethylated normal cells. In contrast, many mRNAs derived from genes containing L1s are elevated in Argonaute 2 (AGO2 or EIF2C2)-depleted cells. Hypomethylated L1s increase L1 mRNA levels. Finally, we found that AGO2 targets intronic L1 pre-mRNA complexes and represses cancer genes. These findings represent one of the mechanisms of cancer genome wide hypomethylation altering gene expression. Hypomethylated intragenic L1s are a nuclear siRNA mediated cis-regulatory element that can repress genes. This epigenetic regulation of retrotransposons likely influences many aspects of genomic biology

    Human papillomavirus DNA in plasma of patients with cervical cancer

    Get PDF
    BACKGROUND: Human papillomavirus (HPV) is a crucial etiological factor for cervical cancer (CC) development. From a diagnostic view-point, the consistent presence of HPV in CC allows the viral DNA to be used as a genetic marker. The aims of this study were to evaluate the presence, physical status and clinical significant of HPV DNA in circulation of CC patients. RESULTS: Whereas 6 out of 50 (12%) HPV positive CC patients revealed plasma HPV DNA, it was detected in none of 20 normal controls or 13 HPV negative CC cases. The plasma DNA exhibited an HPV type identical to the HPV in the primary tumors and the DNA from both sources was integrated into host genome. Interestingly, several findings suggested an association between plasma HPV DNA and metastasis. First, three of the HPV DNA positive cases were CC patients with clinical stage IVB or recurrence with distance metastases (P = 0.001, RR = 15.67). Second, the amount of plasma HPV DNA from metastatic patients to be three times more than three other patients without metastases. Finally, the later cases had tendency to develop recurrence distant metastases within one year after complete treatment when compared with other HPV associated CC patients with the same stage but without the present of plasma HPV DNA. CONCLUSIONS: The plasma HPV DNA originated from the CC, was associated with metastasis and could be used as a marker representing the circulating free CC DNA

    Cyclin A1 promoter hypermethylation in human papillomavirus-associated cervical cancer

    Get PDF
    BACKGROUND: The aim of this study was to evaluate epigenetic status of cyclin A1 in human papillomavirus-associated cervical cancer. Y. Tokumaru et al., Cancer Res 64, 5982-7 (Sep 1, 2004)demonstrated in head and neck squamous-cell cancer an inverse correlation between cyclin A1 promoter hypermethylation and TP53 mutation. Human papillomavirus-associated cervical cancer, however, is deprived of TP53 function by a different mechanism. Therefore, it was of interest to investigate the epigenetic alterations during multistep cervical cancer development. METHODS: In this study, we performed duplex methylation-specific PCR and reverse transcriptase PCR on several cervical cancer cell lines and microdissected cervical cancers. Furthermore, the incidence of cyclin A1 methylation was studied in 43 samples of white blood cells, 25 normal cervices, and 24, 5 and 30 human papillomavirus-associated premalignant, microinvasive and invasive cervical lesions, respectively. RESULTS: We demonstrated cyclin A1 methylation to be commonly found in cervical cancer, both in vitro and in vivo, with its physiological role being to decrease gene expression. More important, this study demonstrated that not only is cyclin A1 promoter hypermethylation strikingly common in cervical cancer, but is also specific to the invasive phenotype in comparison with other histopathological stages during multistep carcinogenesis. None of the normal cells and low-grade squamous intraepithelial lesions exhibited methylation. In contrast, 36.6%, 60% and 93.3% of high-grade squamous intraepithelial lesions, microinvasive and invasive cancers, respectively, showed methylation. CONCLUSION: This methylation study indicated that cyclin A1 is a potential tumor marker for early diagnosis of invasive cervical cancer

    Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications

    Get PDF
    Epigenetic changes in long interspersed nuclear element-1s (LINE-1s or L1s) occur early during the process of carcinogenesis. A lower methylation level (hypomethylation) of LINE-1 is common in most cancers, and the methylation level is further decreased in more advanced cancers. Consequently, several previous studies have suggested the use of LINE-1 hypomethylation levels in cancer screening, risk assessment, tumor staging, and prognostic prediction. Epigenomic changes are complex, and global hypomethylation influences LINE-1s in a generalized fashion. However, the methylation levels of some loci are dependent on their locations. The consequences of LINE-1 hypomethylation are genomic instability and alteration of gene expression. There are several mechanisms that promote both of these consequences in cis. Therefore, the methylation levels of different sets of LINE-1s may represent certain phenotypes. Furthermore, the methylation levels of specific sets of LINE-1s may indicate carcinogenesis-dependent hypomethylation. LINE-1 methylation pattern analysis can classify LINE-1s into one of three classes based on the number of methylated CpG dinucleotides. These classes include hypermethylation, partial methylation, and hypomethylation. The number of partial and hypermethylated loci, but not hypomethylated LINE-1s, is different among normal cell types. Consequently, the number of hypomethylated loci is a more promising marker than methylation level in the detection of cancer DNA. Further genome-wide studies to measure the methylation level of each LINE-1 locus may improve PCR-based methylation analysis to allow for a more specific and sensitive detection of cancer DNA or for an analysis of certain cancer phenotypes

    LINE-1 insertion dimorphisms identification by PCR

    No full text
    • …
    corecore