7 research outputs found

    Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization

    No full text
    The clean conversion of carbon dioxide and water to a single multicarbon product and O2 using sunlight via photocatalysis without the assistance of organic additives or electricity remains an unresolved challenge. Here we report a bio-abiotic hybrid system with the nonphotosynthetic, CO2-fixing acetogenic bacterium, Sporomusa ovata (S. ovata) grown on a scalable and cost-effective photocatalyst sheet consisting of a pair of particulate semiconductors (La and Rh co-doped SrTiO3 (SrTiO3:La,Rh) and Mo-doped BiVO4 (BiVO4:Mo)). The biohybrid effectively produces acetate (CH3COO–) and oxygen (O2) using only sunlight, CO2 and H2O, achieving a solar-to-acetate conversion efficiency of 0.7%. The photocatalyst sheet oxidises water to O2 and provides electrons and hydrogen (H2) to S. ovata for the selective synthesis of CH3COO– from CO2. To demonstrate the utility in a closed carbon cycle, the solar-generated acetate was used directly as feedstock in a bioelectrochemical system for electricity generation. These semi-biological systems thus offer a promising strategy for sustainably and cleanly fixing CO2 and closing the carbon cycle

    Bifunctional Perovskite‐BiVO 4 Tandem Devices for Uninterrupted Solar and Electrocatalytic Water Splitting Cycles

    No full text
    Photoelectrochemical (PEC) fuel synthesis depends on the intermittent solar intensity of the diurnal cycle and ceases at night. Here, an integrated device that does not only possess PEC water splitting functionality, but also operates as an electrolyzer in the nocturnal period to improve the overall capacity factor is described. The bifunctional system is based on an “artificial leaf” tandem PEC architecture that contains an inverse‐structure lead halide perovskite protected by a graphite epoxy/parylene‐C coating (conferring 96 h stability of operation in water), and a porous BiVO4 semiconductor. The light‐absorbers are interfaced with a H2 evolution catalyst (Pt) and a Co‐based water oxidation catalyst, respectively, which can also be directly driven by electricity. Thus, the device can operate in PEC mode during irradiation and switch to an electricity‐powered mode in the dark through bypassing of the semiconductor configuration. The bifunctional perovskite‐BiVO4 tandem provides a solar‐to‐hydrogen efficiency of 1.3% under simulated solar irradiation and an onset for water electrolysis at 1.8 V. The compact design and low cost of the proposed device may provide an advantage over other technologies for round‐the‐clock fuel production
    corecore