4 research outputs found

    ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ условий для контроля качСства наполнитСля Π² мСталличСских Ρ‚Ρ€ΡƒΠ±ΠΊΠ°Ρ…

    Get PDF
    ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ Ρ€Π°Π΄ΠΈΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ качСство наполнитСля Π² Π΄Π΅Ρ‚ΠΎΠ½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΌ ΡˆΠ½ΡƒΡ€Π΅ с Ρ†Π΅Π»ΡŒΡŽ обнаруТСния Ρ€Π°Π·Π½ΠΎΠΏΠ»ΠΎΡ‚Π½Ρ‹Ρ… Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠΉ, Ρ€Π°Π·Ρ€Ρ‹Π²ΠΎΠ² ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… тСхнологичСских Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ закономСрности ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ интСнсивности ΠΏΡ€ΠΎΡˆΠ΅Π΄ΡˆΠ΅Π³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΊΠ²Π°Π½Ρ‚ΠΎΠ² Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΡƒΠ·ΠΊΠΎΠ³ΠΎ ΠΏΡƒΡ‡ΠΊΠ°. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° энСргия рСнтгСновского излучСния, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π°Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€Π΅ΠΏΠ°Π΄ интСнсивности ΠΏΡ€ΠΎΡˆΠ΅Π΄ΡˆΠ΅Π³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ плотности наполнитСля Π½Π° +-30 %

    Aberrant Activity of Histone–Lysine N-Methyltransferase 2 (KMT2) Complexes in Oncogenesis

    No full text
    KMT2 (histone-lysine N-methyltransferase subclass 2) complexes methylate lysine 4 on the histone H3 tail at gene promoters and gene enhancers and, thus, control the process of gene transcription. These complexes not only play an essential role in normal development but have also been described as involved in the aberrant growth of tissues. KMT2 mutations resulting from the rearrangements of the KMT2A (MLL1) gene at 11q23 are associated with pediatric mixed-lineage leukemias, and recent studies demonstrate that KMT2 genes are frequently mutated in many types of human cancers. Moreover, other components of the KMT2 complexes have been reported to contribute to oncogenesis. This review summarizes the recent advances in our knowledge of the role of KMT2 complexes in cell transformation. In addition, it discusses the therapeutic targeting of different components of the KMT2 complexes

    Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation

    Full text link
    ADP-ribosylation controls many processes, including transcription, DNA repair, and bacterial toxicity. ADP-ribosyltransferases and poly-ADP-ribose polymerases (PARPs) catalyze mono- and poly-ADP-ribosylation, respectively, and depend on a highly conserved glutamate residue in the active center for catalysis. However, there is an apparent absence of this glutamate for the recently described PARP6-PARP16, raising questions about how these enzymes function. We find that PARP10, in contrast to PARP1, lacks the catalytic glutamate and has transferase rather than polymerase activity. Despite this fundamental difference, PARP10 also modifies acidic residues. Consequently, we propose an alternative catalytic mechanism for PARP10 compared to PARP1 in which the acidic target residue of the substrate functionally substitutes for the catalytic glutamate by using substrate-assisted catalysis to transfer ADP-ribose. This mechanism explains why the novel PARPs are unable to function as polymerases. This discovery will help to illuminate the different biological functions of mono- versus poly-ADP-ribosylation in cells
    corecore