152 research outputs found

    Diversity and Distribution of Borrelia hermsii

    Get PDF
    Multilocus sequence analysis and laboratory experiments suggest that birds may play a role in maintaining and dispersing this pathogen

    The Giardia lamblia vsp gene repertoire: characteristics, genomic organization, and evolution

    Get PDF
    BACKGROUND:Giardia lamblia trophozoites colonize the intestines of susceptible mammals and cause diarrhea, which can be prolonged despite an intestinal immune response. The variable expression of the variant-specific surface protein (VSP) genes may contribute to this prolonged infection. Only one is expressed at a time, and switching expression from one gene to another occurs by an epigenetic mechanism.RESULTS:The WB Giardia isolate has been sequenced at 10x coverage and assembled into 306 contigs as large as 870 kb in size. We have used this assembly to evaluate the genomic organization and evolution of the vsp repertoire. We have identified 228 complete and 75 partial vsp gene sequences for an estimated repertoire of 270 to 303, making up about 4% of the genome. The vsp gene diversity includes 30 genes containing tandem repeats, and 14 vsp pairs of identical genes present in either head to head or tail to tail configurations (designated as inverted pairs), where the two genes are separated by 2 to 4 kb of non-coding DNA. Interestingly, over half the total vsp repertoire is present in the form of linear gene arrays that can contain up to 10 vsp gene members. Lastly, evidence for recombination within and across minor clades of vsp genes is provided.CONCLUSIONS:The data we present here is the first comprehensive analysis of the vsp gene family from the Genotype A1 WB isolate with an emphasis on vsp characterization, function, evolution and contributions to pathogenesis of this important pathogen.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Systems-Based Analysis of the \u3cem\u3eSarcocystis neurona\u3c/em\u3e Genome Identifies Pathways That Contribute to a Heteroxenous Life Cycle

    Get PDF
    Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. IMPORTANCE Sarcocystis neurona is a member of the coccidia, a clade of single-celled apicomplexan parasites responsible for major economic and health care burdens worldwide. A cousin of Plasmodium, Cryptosporidium, Theileria, and Eimeria, Sarcocystis is one of the most successful parasite genera; it is capable of infecting all vertebrates (fish, reptiles, birds, and mammalsβ€”including humans). The past decade has witnessed an increasing number of human outbreaks of clinical significance associated with acute sarcocystosis. Among Sarcocystis species, S. neurona has a wide host range and causes fatal encephalitis in horses, marine mammals, and several other mammals. To provide insights into the transition from a purely enteric parasite (e.g., Eimeria) to one that forms tissue cysts (Toxoplasma), we present the first genome sequence of S. neurona. Comparisons with other coccidian genomes highlight the molecular innovations that drive its distinct life cycle strategies

    miR-182 and miR-10a Are Key Regulators of Treg Specialisation and Stability during Schistosome and Leishmania-associated Inflammation

    Get PDF
    A diverse suite of effector immune responses provide protection against various pathogens. However, the array of effector responses must be immunologically regulated to limit pathogen- and immune-associated damage. CD4+Foxp3+ regulatory T cells (Treg) calibrate immune responses; however, how Treg cells adapt to control different effector responses is unclear. To investigate the molecular mechanism of Treg diversity we used whole genome expression profiling and next generation small RNA sequencing of Treg cells isolated from type-1 or type-2 inflamed tissue following Leishmania major or Schistosoma mansoni infection, respectively. In-silico analyses identified two miRNA β€œregulatory hubs” miR-10a and miR-182 as critical miRNAs in Th1- or Th2-associated Treg cells, respectively. Functionally and mechanistically, in-vitro and in-vivo systems identified that an IL-12/IFNΞ³ axis regulated miR-10a and its putative transcription factor, Creb. Importantly, reduced miR-10a in Th1-associated Treg cells was critical for Treg function and controlled a suite of genes preventing IFNΞ³ production. In contrast, IL-4 regulated miR-182 and cMaf in Th2-associed Treg cells, which mitigated IL-2 secretion, in part through repression of IL2-promoting genes. Together, this study indicates that CD4+Foxp3+ cells can be shaped by local environmental factors, which orchestrate distinct miRNA pathways preserving Treg stability and suppressor function

    Genome Sequence of Erythromelalgia-Related Poxvirus Identifies it as an Ectromelia Virus Strain

    Get PDF
    Erythromelagia is a condition characterized by attacks of burning pain and inflammation in the extremeties. An epidemic form of this syndrome occurs in secondary students in rural China and a virus referred to as erythromelalgia-associated poxvirus (ERPV) was reported to have been recovered from throat swabs in 1987. Studies performed at the time suggested that ERPV belongs to the orthopoxvirus genus and has similarities with ectromelia virus, the causative agent of mousepox. We have determined the complete genome sequence of ERPV and demonstrated that it has 99.8% identity to the Naval strain of ectromelia virus and a slighly lower identity to the Moscow strain. Small DNA deletions in the Naval genome that are absent from ERPV may suggest that the sequenced strain of Naval was not the immediate progenitor of ERPV

    Comparative Pathogenesis of Three Human and Zoonotic SARS-CoV Strains in Cynomolgus Macaques

    Get PDF
    The severe acute respiratory syndrome (SARS) epidemic was characterized by increased pathogenicity in the elderly due to an early exacerbated innate host response. SARS-CoV is a zoonotic pathogen that entered the human population through an intermediate host like the palm civet. To prevent future introductions of zoonotic SARS-CoV strains and subsequent transmission into the human population, heterologous disease models are needed to test the efficacy of vaccines and therapeutics against both late human and zoonotic isolates. Here we show that both human and zoonotic SARS-CoV strains can infect cynomolgus macaques and resulted in radiological as well as histopathological changes similar to those seen in mild human cases. Viral replication was higher in animals infected with a late human phase isolate compared to a zoonotic isolate. While there were significant differences in the number of host genes differentially regulated during the host responses between the three SARS-CoV strains, the top pathways and functions were similar and only apparent early during infection with the majority of genes associated with interferon signaling pathways. This study characterizes critical disease models in the evaluation and licensure of therapeutic strategies against SARS-CoV for human use

    Cationic Amino Acid Transporter-2 Regulates Immunity by Modulating Arginase Activity

    Get PDF
    Cationic amino acid transporters (CAT) are important regulators of NOS2 and ARG1 activity because they regulate L-arginine availability. However, their role in the development of Th1/Th2 effector functions following infection has not been investigated. Here we dissect the function of CAT2 by studying two infectious disease models characterized by the development of polarized Th1 or Th2-type responses. We show that CAT2βˆ’/βˆ’ mice are significantly more susceptible to the Th1-inducing pathogen Toxoplasma gondii. Although T. gondii infected CAT2βˆ’/βˆ’ mice developed stronger IFN-Ξ³ responses, nitric oxide (NO) production was significantly impaired, which contributed to their enhanced susceptibility. In contrast, CAT2βˆ’/βˆ’ mice infected with the Th2-inducing pathogen Schistosoma mansoni displayed no change in susceptibility to infection, although they succumbed to schistosomiasis at an accelerated rate. Granuloma formation and fibrosis, pathological features regulated by Th2 cytokines, were also exacerbated even though their Th2 response was reduced. Finally, while IL-13 blockade was highly efficacious in wild-type mice, the development of fibrosis in CAT2βˆ’/βˆ’ mice was largely IL-13-independent. Instead, the exacerbated pathology was associated with increased arginase activity in fibroblasts and alternatively activated macrophages, both in vitro and in vivo. Thus, by controlling NOS2 and arginase activity, CAT2 functions as a potent regulator of immunity
    • …
    corecore