12 research outputs found

    Interim data monitoring to enroll higher-risk participants in HIV prevention trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lower-than-expected incidence of HIV undermines sample size calculations and compromises the power of a HIV prevention trial. We evaluated the effectiveness of interim monitoring of HIV infection rates and on-going modification of recruitment strategies to enroll women at higher risk of HIV in the Cellulose Sulfate Phase III study in Nigeria.</p> <p>Methods</p> <p>We analyzed prevalence and incidence of HIV and other sexually transmitted infections, demographic and sexual behavior characteristics aggregated over the treatment groups on a quarterly basis. The site investigators were advised on their recruitment strategies based on the findings of the interim analyses.</p> <p>Results</p> <p>A total of 3619 women were screened and 1644 enrolled at the Ikeja and Apapa clinics in Lagos, and at the Central and Peripheral clinics in Port Harcourt. Twelve months after study initiation, the overall incidence of HIV was less than one-third of the pre-study assumption, with rates of HIV that varied substantially between clinics. Due to the low prevalence and incidence rates of HIV, it was decided to close the Ikeja clinic in Lagos and to find new catchment areas in Port Harcourt. This strategy was associated with an almost two-fold increase in observed HIV incidence during the second year of the study.</p> <p>Conclusion</p> <p>Given the difficulties in estimating HIV incidence, a close monitoring of HIV prevalence and incidence rates during a trial is warranted. The on-going modification of recruitment strategies based on the regular analysis of HIV rates appeared to be an efficient method for targeting populations at greatest risk of HIV infection and increasing study power in the Nigeria trial.</p> <p>Trial Registration</p> <p>The trial was registered with the ClinicalTrials.gov registry under #NCT00120770 <url>http://clinicaltrials.gov/ct2/show/NCT00120770</url></p

    Anthropogenic Heat Release Into the Environment

    No full text
    This work is intended to systematically study an inventory of the anthropogenic heat produced. This research strives to present a better estimate of the energy generated by humans and human activities, and compare this estimate to the significant energy quantity with respect to climate change. Because the top of atmosphere (TOA) net energy flux was found to be 0.85 ± 0.15 W/m2 the planet is out of energy balance, as studied by the group from NASA in 2005. The Earth is estimated to gain 431 terawatts (TW) from this energy imbalance. This number is the significant heat quantity to consider when studying global climate change, and not the 78,300 TW, the absorbed part of the primary solar radiation reaching the Earth's surface, as commonly cited and used at present in the literature. Based on energy supplied to the boilers (in the Rankine cycle) of at least 13 TW, body energy dissipated by 7 × 109 people and their domestic animals, the value of the total world anthropogenic heat production rate is 15.26 TW or 3.5% of the energy gain by the Earth. Based on world energy consumption and the energy dissipated by 7 × 109 people and their domestic animals, the value of the total world anthropogenic heat production rate is 19.7 TW or about 5% of the energy gain by the Earth. These numbers are significantly different from 13 TW. More importantly, the figures are 3.5–5% of the net energy gained by the Earth, and hence significant. The quantity is not 0.017% of the absorbed part of the main solar radiation reaching the Earth's surface and negligible
    corecore