1,068 research outputs found

    Proteomic techniques to probe the ubiquitin landscape

    Get PDF
    Protein ubiquitination is a powerful modulator of cellular functions. Classically linked to the degradation of proteins, it also plays a role in intracellular localization, DNA damage response, vesicle fusion events, and the immune and transcriptional responses. Ubiquitin is versatile and can code for several distinct signals, either by adding a single ubiquitin or forming a chain of ubiquitins on the target protein. The enzymatic cascade associated with the cellular process determines the nature of the modification. Numerous efforts have been made for the identification of ubiquitin acceptor sites in the target proteins using genetic, biochemical or mass-spectrometry based proteomic methods, such as affinity-based enrichment of ubiquitinated proteins, and antibody-based enrichment of modified peptides. Modern instrumentation enables quantitative mass-spectrometry strategies to identify and characterize hundreds of ubiquitin substrates in a single analysis making it the dominant method for ubiquitin site detection. Characterization of the inter-ubiquitin connectivity in ubiquitin polymers has also moved into focus, with the field of targeted proteomics techniques proving invaluable for identifying and quantifying linkage types found in such polyubiquitin chains. This review seeks to provide an overview of the many mass-spectrometry based proteomics techniques available for exploring this dynamic field

    Robust co-immunoprecipitation with mass spectrometry for Caenorhabditis elegans using solid-phase enhanced sample preparation

    Get PDF
    Studying protein interactions in vivo can reveal key molecular mechanisms of biological processes. Co-immunoprecipitation with mass spectrometry detects protein–protein interactions with high throughput. The nematode Caenorhabditis elegans is a powerful genetic model organism for in vivo studies. Yet its rigid and complex tissues require optimization for biochemistry applications to ensure reproducibility. The authors optimized co-immunoprecipitation with mass spectrometry by combining a native co-immunoprecipitation procedure with single-pot, solid-phase enhanced sample preparation. The authors' results for the highly conserved chromatin regulator FACT subunits HMG-3 and HMG-4 demonstrated that single-pot, solid-phase enhanced sample preparation-integrated co-immunoprecipitation with mass spectrometry procedures for C. elegans samples are highly robust. Moreover, in an accompanying study about the chromodomain factor MRG-1 (MRG15 in humans), the authors demonstrated remarkably high reproducibility for ten replicate experiments

    Endothelial PKA activity regulates angiogenesis by limiting autophagy through phosphorylation of ATG16L1

    Get PDF
    The cAMP-dependent protein kinase A (PKA) regulates various cellular functions in health and disease. In endothelial cells PKA activity promotes vessel maturation and limits tip cell formation. Here, we used a chemical genetic screen to identify endothelial-specific direct substrates of PKA in human umbilical vein endothelial cells (HUVEC) that may mediate these effects. Amongst several candidates, we identified ATG16L1, a regulator of autophagy, as novel target of PKA. Biochemical validation, mass spectrometry and peptide spot arrays revealed that PKA phosphorylates ATG16L1α at Ser268 and ATG16L1β at Ser269, driving phosphorylation-dependent degradation of ATG16L1 protein. Reducing PKA activity increased ATG16L1 protein levels and endothelial autophagy. Mouse in vivo genetics and pharmacological experiments demonstrated that autophagy inhibition partially rescues vascular hypersprouting caused by PKA deficiency. Together these results indicate that endothelial PKA activity mediates a critical switch from active sprouting to quiescence in part through phosphorylation of ATG16L1, which in turn reduces endothelial autophagy

    YAP and β-catenin co-operate to drive oncogenesis in basal breast cancer

    Get PDF
    Targeting cancer stem cells (CSCs) can serve as an effective approach toward limiting resistance to therapies and the development of metastases in many forms of cancer. While basal breast cancers encompass cells with CSC features, rational therapies remain poorly established. Here, we show that receptor tyrosine kinase Met signalling promotes the activity of the Hippo component YAP in basal breast cancer. Further analysis revealed enhanced YAP activity within the CSC population. Using both genetic and pharmaceutical approaches, we show that interfering with YAP activity delays basal cancer formation, prevents luminal to basal trans-differentiation and reduces CSC survival. Gene expression analysis of YAP knock-out mammary glands revealed a strong decrease in β-catenin target genes in basal breast cancer, suggesting that YAP is required for nuclear β-catenin activity. Mechanistically, we find that nuclear YAP interacts and overlaps with β-catenin and TEAD4 at common gene regulatory elements. Analysis of proteomic data from primary breast cancer patients identified a significant upregulation of the YAP activity signature in basal compared to other breast cancers, suggesting that YAP activity is limited to basal types. Our findings demonstrate that in basal breast cancers, β-catenin activity is dependent on YAP signalling and controls the CSC program. These findings suggest that targeting the YAP/TEAD4/β-catenin complex offers a potential therapeutic strategy for eradicating CSCs in basal (triple-negative) breast cancers

    H3.3K27M mutation is not a suitable target for immunotherapy in HLA-A2(+) patients with diffuse midline glioma

    Get PDF
    Diffuse midline glioma is the leading cause of solid cancer-related deaths in children with very limited treatment options. A majority of the tumors carry a point mutation in the histone 3 variant (H3.3) creating a potential HLA-A*02:01 binding epitope (H3.3K27M(26-35)). Here, we isolated an H3.3K27M-specific T cell receptor (TCR) from transgenic mice expressing a diverse human TCR repertoire. Despite a high functional avidity of H3.3K27M-specific T cells, we were not able to achieve recognition of cells naturally expressing the H3.3K27M mutation, even when overexpressed as a transgene. Similar results were obtained with T cells expressing the published TCR 1H5 against the same epitope. CRISPR/Cas9 editing was used to exclude interference by endogenous TCRs in donor T cells. Overall, our data provide strong evidence that the H3.3K27M mutation is not a suitable target for cancer immunotherapy, most likely due to insufficient epitope processing and/or amount to be recognized by HLA-A*02:01 restricted CD8(+) T cells

    Cooling toolbox for atoms in optical lattices

    Full text link
    We propose and analyze several schemes for cooling bosonic and fermionic atoms in an optical lattice potential close to the ground state of the no-tunnelling regime. Some of the protocols rely on the concept of algorithmic cooling, which combines occupation number filtering with ideas from ensemble quantum computation. We also design algorithms that create an ensemble of defect-free quantum registers. We study the efficiency of our protocols for realistic temperatures and in the presence of a harmonic confinement. We also propose an incoherent physical implementation of filtering which can be operated in a continuous way.Comment: 14 pages, 13 figure

    SUMOylation of the chromodomain factor MRG-1 in C. elegans affects chromatin-regulatory dynamics

    Get PDF
    Epigenetic mechanisms control chromatin accessibility and gene expression to ensure proper cell fate specification. Histone proteins are integral chromatin components, and their modification promotes gene expression regulation. Specific proteins recognize modified histones such as the chromodomain protein MRG-1. MRG-1 is the Caenorhabditis elegans ortholog of mammalian MRG15, which is involved in DNA repair. MRG-1 binds methylated histone H3 and is important for germline maturation and safeguarding. To elucidate interacting proteins that modulate MRG-1 activity, we performed in-depth protein-protein interaction analysis using immunoprecipitations coupled with mass spectrometry. We detected strong association with the Small ubiquitin-like modifier SUMO, and found that MRG-1 is post-translationally modified by SUMO. SUMOylation affects chromatin-binding dynamics of MRG-1, suggesting an epigenetic regulation pathway, which may be conserved

    A CRISPR/Cas9-mediated screen identifies determinants of early plasma cell differentiation

    Get PDF
    INTRODUCTION: The differentiation of B cells into antibody-secreting plasma cells depends on cell division-coupled, epigenetic and other cellular processes that are incompletely understood. METHODS: We have developed a CRISPR/Cas9-based screen that models an early stage of T cell-dependent plasma cell differentiation and measures B cell survival or proliferation versus the formation of CD138+ plasmablasts. Here, we refined and extended this screen to more than 500 candidate genes that are highly expressed in plasma cells. RESULTS: Among known genes whose deletion preferentially or mostly affected plasmablast formation were the transcription factors Prdm1 (BLIMP1), Irf4 and Pou2af1 (OBF-1), and the Ern1 gene encoding IRE1a, while deletion of XBP1, the transcriptional master regulator that specifies the expansion of the secretory program in plasma cells, had no effect. Defective plasmablast formation caused by Ern1 deletion could not be rescued by the active, spliced form of XBP1 whose processing is dependent on and downstream of IRE1a, suggesting that in early plasma cell differentiation IRE1a acts independently of XBP1. Moreover, we newly identified several genes involved in NF-kB signaling (Nfkbia), vesicle trafficking (Arf4, Preb) and epigenetic regulators that form part of the NuRD complex (Hdac1, Mta2, Mbd2) to be required for plasmablast formation. Deletion of ARF4, a small GTPase required for COPI vesicle formation, impaired plasmablast formation and blocked antibody secretion. After Hdac1 deletion plasmablast differentiation was consistently reduced by about 50%, while deletion of the closely related Hdac2 gene had no effect. Hdac1 knock-out led to strongly perturbed protein expression of antagonistic transcription factors that govern plasma cell versus B cell identity (by decreasing IRF4 and BLIMP1 and increasing BACH2 and PAX5). DISCUSSION: Taken together, our results highlight specific and non-redundant roles for Ern1, Arf4 and Hdac1 in the early steps of plasma cell differentiation

    Scissors mode of trapped dipolar gases

    Full text link
    We study the scissors modes of dipolar boson and fermion gases trapped in a spherically symmetric potential. We use the harmonic oscillator states to solve the time-dependent Gross-Pitaevskii equation for bosons and the time-dependent Hartree-Fock equation for fermions. It is pointed out that the scissors modes of bosons and fermions can be of quite different nature
    corecore