40 research outputs found
Staphylococcus aureus bacteriuria as a prognosticator for outcome of Staphylococcus aureus bacteremia: a case-control study
<p>Abstract</p> <p>Background</p> <p>When <it>Staphylococcus aureus </it>is isolated in urine, it is thought to usually represent hematogenous spread. Because such spread might have special clinical significance, we evaluated predictors and outcomes of <it>S. aureus </it>bacteriuria among patients with <it>S. aureus </it>bacteremia.</p> <p>Methods</p> <p>A case-control study was performed at John H. Stroger Jr. Hospital of Cook County among adult inpatients during January 2002-December 2006. Cases and controls had positive and negative urine cultures, respectively, for <it>S. aureus</it>, within 72 hours of positive blood culture for <it>S. aureus</it>. Controls were sampled randomly in a 1:4 ratio. Univariate and multivariable logistic regression analyses were done.</p> <p>Results</p> <p>Overall, 59% of patients were African-American, 12% died, 56% of infections had community-onset infections, and 58% were infected with methicillin-susceptible <it>S. aureus </it>(MSSA). Among 61 cases and 247 controls, predictors of <it>S. aureus </it>bacteriuria on multivariate analysis were urological surgery (OR = 3.4, p = 0.06) and genitourinary infection (OR = 9.2, p = 0.002). Among patients who died, there were significantly more patients with bacteriuria than among patients who survived (39% vs. 17%; p = 0.002). In multiple Cox regression analysis, death risks in bacteremic patients were bacteriuria (hazard ratio 2.9, CI 1.4-5.9, p = 0.004), bladder catheter use (2.0, 1.0-4.0, p = 0.06), and Charlson score (1.1, 1.1-1.3, p = 0.02). Neither length of stay nor methicillin-resistant <it>Staphylococcus aureus </it>(MRSA) infection was a predictor of <it>S. aureus </it>bacteriuria or death.</p> <p>Conclusions</p> <p>Among patients with <it>S. aureus </it>bacteremia, those with <it>S. aureus </it>bacteriuria had 3-fold higher mortality than those without bacteriuria, even after adjustment for comorbidities. Bacteriuria may identify patients with more severe bacteremia, who are at risk of worse outcomes.</p
Syndromics: A Bioinformatics Approach for Neurotrauma Research
Substantial scientific progress has been made in the past 50Â years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational âsyndromeâ produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call âsyndromicsâ, which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings
Diabetes decreases creatine kinase enzyme activity and mRNA level in the rat heart
Several of the adenosinetriphosphatase enzymes that are responsible for cardiac muscle contraction rely on high-energy phosphates supplied by the creatine kinase (CK) system. Experimental diabetes mellitus has been shown to cause a decrease in the maximal contractile performance of the heart. We postulated that the decrease in contractile performance may be explained in part by a decrease in CK enzyme activity. To evaluate this possibility, we determined the level of CK activity and isoenzyme distribution in ventricular homogenates from normal, diabetic, and insulin-treated diabetic rats. We found that total CK activity was decreased by 35% in diabetic hearts and that a 66% reduction in the cardiac-specific MB isoenzyme occurs. Using a cDNA probe for CK-muscle (M) RNA in Northern blot analysis, we determined that a 61.1% decrease in CK-M mRNA occurs in diabetes. Chronic insulin therapy for 1 mo restores CK-M mRNA levels and enzyme activity. In conclusion, diabetes-induced CK enzyme decreases are mediated in part by a lower level of CK-M mRNA that codes for the major CK-M subunit protein. Decreased performance of the CK system may contribute to diabetic cardiomyopathy.link_to_subscribed_fulltex
Molecular Mechanisms and Clinical Implications of Reversible Protein S-Glutathionylation
Sulfhydryl chemistry plays a vital role in normal biology and in defense of cells against oxidants, free radicals, and electrophiles. Modification of critical cysteine residues is an important mechanism of signal transduction, and perturbation of thiolâdisulfide homeostasis is an important consequence of many diseases. A prevalent form of cysteine modification is reversible formation of protein mixed disulfides (proteinâSSG) with glutathione (GSH). The abundance of GSH in cells and the ready conversion of sulfenic acids and S-nitroso derivatives to S-glutathione mixed disulfides suggests that reversible S-glutathionylation may be a common feature of redox signal transduction and regulation of the activities of redox sensitive thiol-proteins. The glutaredoxin enzyme has served as a focal point and important tool for evolution of this regulatory mechanism, because it is a specific and efficient catalyst of proteinâSSG deglutathionylation. However, mechanisms of control of intracellular Grx activity in response to various stimuli are not well understood, and delineation of specific mechanisms and enzyme(s) involved in formation of proteinâSSG intermediates requires further attention. A large number of proteins have been identified as potentially regulated by reversible S-glutathionylation, but only a few studies have documented glutathionylation-dependent changes in activity of specific proteins in a physiological context. Oxidative stress is a hallmark of many diseases which may interrupt or divert normal redox signaling and perturb proteinâthiol homeostasis. Examples involving changes in S-glutathionylation of specific proteins are discussed in the context of diabetes, cardiovascular and lung diseases, cancer, and neurodegenerative diseases. Antioxid. Redox Signal, 10, 1941â1988