3,536 research outputs found

    Optical properties, electron-phonon coupling, and Raman scattering of vanadium ladder compounds

    Full text link
    The electronic structure of two V-based ladder compounds, the quarter-filled NaV2_2O5_5 in the symmetric phase and the iso-structural half-filled CaV2_2O5_5 is investigated by ab initio calculations. Based on the bandstructure we determine the dielectric tensor ϵ(ω)\epsilon(\omega) of these systems in a wide energy range. The frequencies and eigenvectors of the fully symmetric Ag_{g} phonon modes and the corresponding electron-phonon and spin-phonon coupling parameters are also calculated from first-principles. We determine the Raman scattering intensities of the Ag_g phonon modes as a function of polarization and frequency of the exciting light. All results, i.e. shape and magnitude of the dielectric function, phonon frequencies and Raman intensities show very good agreement with available experimental data.Comment: 11 pages, 10 figure

    The effect of alloying on the ordering processes in near-alpha titanium alloys

    Full text link
    The substructure of near-alpha Ti-Al-Sn-Zr-Mo-Si alloys containing up to 12.5. at% aluminum was studied by transmission electron microscopy (TEM). It was shown that long-range order sections are formed at aging temperatures up to 500. °C in alloys, high in aluminum, and the ordered phase is formed by the nucleation and growth mechanism at 700. °C aging temperatures. Causes of changing the phase transformation mechanism have been discussed, and the relationship between the structure and properties of alloys, depending on modes of heat treatment has been analyzed. Also the influence of aluminides and silicides precipitation on the mechanical alloy properties after aging was examined. It was shown that the aluminide formation led to a slight hardening and a significant viscosity decrease. The silicide particles formation reduced the heat resistance properties, due to the depletion of the solid solution by silicon. © 2012 Elsevier B.V

    Optical spectra, crystal-field parameters, and magnetic susceptibility of the new multiferroic NdFe3(BO3)4

    Full text link
    We report high-resolution optical absorption spectra for NdFe3(BO3)4 trigonal single crystal which is known to exhibit a giant magnetoelectric effect below the temperature of magnetic ordering TN = 33 K. The analysis of the temperature-dependent polarized spectra reveals the energies and, in some cases, symmetries and exchange splittings of Nd3+ 84 Kramers doublets. We perform crystal-field calculations starting from the exchange-charge model, obtain a set of six real crystal-field parameters, and calculate wave functions and magnetic g-factors. In particular, the values g(perpendicular) = 2.385, g(parallel) = 1.376 were found for the Nd3+ ground-state doublet. We obtain Bloc=7.88 T and |JFN|= 0.48 K for the values of the local effective magnetic field at liquid helium temperatures at the Nd3+ site and the Nd - Fe exchange integral, respectively, using the experimentally measured Nd3+ ground-state splitting of 8.8 cm-1. To check reliability of our set of crystal field parameters we model the magnetic susceptibility data from literature. A dimer containing two nearest-neighbor iron ions in the spiral chain is considered to partly account for quasi-one-dimensional properties of iron borates, and then the mean-field approximation is used. The results of calculations with the exchange parameters for Fe3+ ions Jnn = -6.25 K (intra-chain interactions) and Jnnn = -1.92 K (inter-chain interactions) obtained from fitting agree well with the experimental data.Comment: 13 pages, 8 figures, 2 table

    Inversionless light amplification and optical switching controlled by state-dependent alignment of molecules

    Full text link
    We propose a method to achieve amplification without population inversion by anisotropic molecules whose orientation by an external electric field is state-dependent. It is based on decoupling of the lower-state molecules from the resonant light while the excited ones remain emitting. The suitable class of molecules is discussed, the equation for the gain factor is derived, and the magnitude of the inversionless amplification is estimated for the typical experimental conditions. Such switching of the sample from absorbing to amplifying via transparent state is shown to be possible both with the aid of dc and ac control electric fields.Comment: AMS-LaTeX v1.2, 4 pages with 4 figure
    corecore