14,651 research outputs found

    Strong Field Ionization Rate for Arbitrary Laser Frequencies

    Full text link
    A simple, analytical, nonrelativistic ionization rate formula for atoms and positive ions in intense ultraviolet and x-ray electromagnetic fields is derived. The rate is valid at arbitrary values of the Keldysh parameter and confirmed by results from ab initio numerical solutions of the single active electron, time-dependent Schroedinger equation. The proposed rate is particularly relevant for experiments employing the new free electron laser (FEL) sources under construction worldwide.Comment: 4 pages, 1 figure, REVTe

    Multiple colliding electromagnetic pulses: a way to lower the threshold of e+e−e^+e^- pair production from vacuum

    Full text link
    The scheme of simultaneous multiple pulse focusing on one spot naturally arises from the structural features of projected new laser systems, such as ELI and HiPER. It is shown that the multiple pulse configuration is beneficial for observing e+e−e^+e^- pair production from vacuum under the action of sufficiently strong electromagnetic fields. The field of the focused pulses is described using a realistic three-dimensional model based on an exact solution of the Maxwell equations. The e+e−e^+e^- pair production threshold in terms of electromagnetic field energy can be substantially lowered if, instead of one or even two colliding pulses, multiple pulses focused on one spot are used. The multiple pulse interaction geometry gives rise to subwavelength field features in the focal region. These features result in the production of extremely short e+e−e^+e^- bunches.Comment: 10 pages, 4 figure

    Quantum effects with an X-ray free electron laser

    Full text link
    A quantum kinetic equation coupled with Maxwell's equation is used to estimate the laser power required at an XFEL facility to expose intrinsically quantum effects in the process of QED vacuum decay via spontaneous pair production. A 9 TW-peak XFEL laser with photon energy 8.3 keV could be sufficient to initiate particle accumulation and the consequent formation of a plasma of spontaneously produced pairs. The evolution of the particle number in the plasma will exhibit non-Markovian aspects of the strong-field pair production process and the plasma's internal currents will generate an electric field whose interference with that of the laser leads to plasma oscillations.Comment: 4 pages, LaTeX2

    Noncentrosymmetric plasmon modes and giant terahertz photocurrent in a two-dimensional plasmonic crystal

    Get PDF
    We introduce and theoretically study the plasmon-photogalvanic effect in the planar noncentrosymmetric plasmonic crystal containing a homogeneous two-dimensional electron system gated by a periodic metal grating with an asymmetric unit cell. The plasmon-photogalvanic DC current arises due to the two-dimensional electron drag by the noncentrosymmetric plasmon modes excited under normal incidence of terahertz radiation. We show that the collective plasmon modes of the planar plasmonic crystal become strongly noncentrosymmetric in the weak coupling regime of their anticrossing. Large plasmon wavevector (which is typically by two-three orders of magnitude greater than the terahertz photon wavevector) along with strong near-field enhancement at the plasmon resonance make the plasmonic drag a much stronger effect compared to the photon drag observed in conventional two-dimensional electron systems.Comment: 9 pages, 10 figures, submitted to Physical Review

    Band-aid for information loss from black holes

    Full text link
    We summarize, simplify and extend recent work showing that small deviations from exact thermality in Hawking radiation, first uncovered by Kraus and Wilczek, have the capacity to carry off the maximum information content of a black hole. This goes a considerable way toward resolving a long-standing "information-loss paradox"
    • …
    corecore