5,092 research outputs found

    Higher Gauge Theory and Gravity in (2+1) Dimensions

    Full text link
    Non-abelian higher gauge theory has recently emerged as a generalization of standard gauge theory to higher dimensional (2-dimensional in the present context) connection forms, and as such, it has been successfully applied to the non-abelian generalizations of the Yang-Mills theory and 2-form electrodynamics. (2+1)-dimensional gravity, on the other hand, has been a fertile testing ground for many concepts related to classical and quantum gravity, and it is therefore only natural to investigate whether we can find an application of higher gauge theory in this latter context. In the present paper we investigate the possibility of applying the formalism of higher gauge theory to gravity in (2+1) dimensions, and we show that a nontrivial model of (2+1)-dimensional gravity coupled to scalar and tensorial matter fields - the ΣΦEA\Sigma\Phi EA model - can be formulated both as a standard gauge theory and as a higher gauge theory. Since the model has a very rich structure - it admits as solutions black-hole BTZ-like geometries, particle-like geometries as well as Robertson-Friedman-Walker cosmological-like expanding geometries - this opens a wide perspective for higher gauge theory to be tested and understood in a relevant gravitational context. Additionally, it offers the possibility of studying gravity in (2+1) dimensions coupled to matter in an entirely new framework.Comment: 22 page

    Scalar and tensorial topological matter coupled to (2+1)-dimensional gravity:A.Classical theory and global charges

    Full text link
    We consider the coupling of scalar topological matter to (2+1)-dimensional gravity. The matter fields consist of a 0-form scalar field and a 2-form tensor field. We carry out a canonical analysis of the classical theory, investigating its sectors and solutions. We show that the model admits both BTZ-like black-hole solutions and homogeneous/inhomogeneous FRW cosmological solutions.We also investigate the global charges associated with the model and show that the algebra of charges is the extension of the Kac-Moody algebra for the field-rigid gauge charges, and the Virasoro algebrafor the diffeomorphism charges. Finally, we show that the model can be written as a generalized Chern-Simons theory, opening the perspective for its formulation as a generalized higher gauge theory.Comment: 40 page

    On quantum non-signalling boxes

    Full text link
    A classical non-signalling (or causal) box is an operation on classical bipartite input with classical bipartite output such that no signal can be sent from a party to the other through the use of the box. The quantum counterpart of such boxes, i.e. completely positive trace-preserving maps on bipartite states, though studied in literature, have been investigated less intensively than classical boxes. We present here some results and remarks about such maps. In particular, we analyze: the relations among properties as causality, non-locality and entanglement; the connection between causal and entanglement breaking maps; the characterization of causal maps in terms of the classification of states with fixed reductions. We also provide new proofs of the fact that every non-product unitary transformation is not causal, as well as for the equivalence of the so-called semicausality and semilocalizability properties.Comment: 18 pages, 7 figures, revtex

    Asynchronous performance analysis of a single-phase capacitor-start, capacitor-run permanent magnet motor

    Get PDF
    This work presents a detailed analysis of the asynchronous torque components (average cage, magnet braking torque and pulsating) for a single-phase capacitor-start, capacitor-run permanent magnet motor. The computed envelope of pulsating torque superimposed over the average electromagnetic torque leads to an accurate prediction of starting torque. The developed approach is realized by means of a combination of symmetrical components and d-q axes theory and it can be extended for any m-phase AC motor - induction, synchronous reluctance or synchronous permanent magnet. The resultant average electromagnetic torque is determined by superimposing the asynchronous torques and magnet braking torque effects

    Generalized quantum measurements and local realism

    Full text link
    The structure of a local hidden variable model for experiments involving sequences of measurements rigorously is analyzed. Constraints imposed by local realism on the conditional probabilities of the outcomes of such measurement schemes are explicitly derived. The violation of local realism in the case of ``hidden nonlocality'' is illustrated by an operational example.Comment: Revtex, 12 pages; Some modifications of introduction has been made; a note stating that part of results had been obtained earlier by other authors, has been added; one postscript figure available at request from [email protected]

    Implications of Teleportation for Nonlocality

    Full text link
    Adopting an approach similar to that of Zukowski [Phys. Rev. A 62, 032101 (2000)], we investigate connections between teleportation and nonlocality. We derive a Bell-type inequality pertaining to the teleportation scenario and show that it is violated in the case of teleportation using a perfect singlet. We also investigate teleportation using `Werner states' of the form x P + (1-x) I/4, where P is the projector corresponding to a singlet state and I is the identity. We find that our inequality is violated, implying nonlocality, if x > 1/sqrt(2). In addition, we extend Werner's local hidden variable model to simulation of teleportation with the x = 1/2 Werner state. Thus teleportation using this state does not involve nonlocality even though the fidelity achieved is 3/4 which is greater than the `classical limit' of 2/3. Finally, we comment on a result of Gisin's and offer some philosophical remarks on teleportation and nonlocality generally.Comment: 10 pages, no figures. Title changed to accord with Phys. Rev. A version. A note and an extra reference have been added. Journal reference adde

    Anisotropic Diffusion Limited Aggregation

    Full text link
    Using stochastic conformal mappings we study the effects of anisotropic perturbations on diffusion limited aggregation (DLA) in two dimensions. The harmonic measure of the growth probability for DLA can be conformally mapped onto a constant measure on a unit circle. Here we map mm preferred directions for growth of angular width σ\sigma to a distribution on the unit circle which is a periodic function with mm peaks in [π,π)[-\pi, \pi) such that the width σ\sigma of each peak scales as σ1/k\sigma \sim 1/\sqrt{k}, where kk defines the ``strength'' of anisotropy along any of the mm chosen directions. The two parameters (m,k)(m,k) map out a parameter space of perturbations that allows a continuous transition from DLA (for m=0m=0 or k=0k=0) to mm needle-like fingers as kk \to \infty. We show that at fixed mm the effective fractal dimension of the clusters D(m,k)D(m,k) obtained from mass-radius scaling decreases with increasing kk from DDLA1.71D_{DLA} \simeq 1.71 to a value bounded from below by Dmin=3/2D_{min} = 3/2. Scaling arguments suggest a specific form for the dependence of the fractal dimension D(m,k)D(m,k) on kk for large kk, form which compares favorably with numerical results.Comment: 6 pages, 4 figures, submitted to Phys. Rev.

    Torque behavior of one-phase permanent magnet AC motor

    Get PDF
    This paper presents a detailed comparative study of two starting and running methods for a single-phase permanent magnet synchronous motor, equipped with a squirrel-cage rotor. The analysis of the motor performance is realized for a pulse width modulated (PWM) inverter fed motor and for a capacitor-start, capacitor-run motor. The developed approach may be extended to any 1-phase ac motor—induction, synchronous reluctance or synchronous permanent magnet

    Entanglement of pure states for a single copy

    Get PDF
    An optimal local conversion strategy between any two pure states of a bipartite system is presented. It is optimal in that the probability of success is the largest achievable if the parties which share the system, and which can communicate classically, are only allowed to act locally on it. The study of optimal local conversions sheds some light on the entanglement of a single copy of a pure state. We propose a quantification of such an entanglement by means of a finite minimal set of new measures from which the optimal probability of conversion follows.Comment: Revtex, 4 pages, no figures. Minor changes. Appendix remove

    Dust in dwarf galaxies: The case of NGC 4214

    Get PDF
    We have carried out a detailed modelling of the dust heating and emission in the nearby, starbursting dwarf galaxy NGC 4214. Due to its proximity and the great wealth of data from the UV to the millimeter range (from GALEX, HST, {\it Spitzer}, Herschel, Planck and IRAM) it is possible to separately model the emission from HII regions and their associated photodissociation regions (PDRs) and the emission from diffuse dust. Furthermore, most model parameters can be directly determined from the data leaving very few free parameters. We can fit both the emission from HII+PDR regions and the diffuse emission in NGC 4214 with these models with "normal" dust properties and realistic parameters.Comment: 4pages, 3 figures. To appear in 'The Spectral Energy Distribution of Galaxies' Proceedings IAU Symposium No 284, 201
    corecore