5,092 research outputs found
Higher Gauge Theory and Gravity in (2+1) Dimensions
Non-abelian higher gauge theory has recently emerged as a generalization of
standard gauge theory to higher dimensional (2-dimensional in the present
context) connection forms, and as such, it has been successfully applied to the
non-abelian generalizations of the Yang-Mills theory and 2-form
electrodynamics. (2+1)-dimensional gravity, on the other hand, has been a
fertile testing ground for many concepts related to classical and quantum
gravity, and it is therefore only natural to investigate whether we can find an
application of higher gauge theory in this latter context. In the present paper
we investigate the possibility of applying the formalism of higher gauge theory
to gravity in (2+1) dimensions, and we show that a nontrivial model of
(2+1)-dimensional gravity coupled to scalar and tensorial matter fields - the
model - can be formulated both as a standard gauge theory and
as a higher gauge theory. Since the model has a very rich structure - it admits
as solutions black-hole BTZ-like geometries, particle-like geometries as well
as Robertson-Friedman-Walker cosmological-like expanding geometries - this
opens a wide perspective for higher gauge theory to be tested and understood in
a relevant gravitational context. Additionally, it offers the possibility of
studying gravity in (2+1) dimensions coupled to matter in an entirely new
framework.Comment: 22 page
Scalar and tensorial topological matter coupled to (2+1)-dimensional gravity:A.Classical theory and global charges
We consider the coupling of scalar topological matter to (2+1)-dimensional
gravity. The matter fields consist of a 0-form scalar field and a 2-form tensor
field. We carry out a canonical analysis of the classical theory, investigating
its sectors and solutions. We show that the model admits both BTZ-like
black-hole solutions and homogeneous/inhomogeneous FRW cosmological
solutions.We also investigate the global charges associated with the model and
show that the algebra of charges is the extension of the Kac-Moody algebra for
the field-rigid gauge charges, and the Virasoro algebrafor the diffeomorphism
charges. Finally, we show that the model can be written as a generalized
Chern-Simons theory, opening the perspective for its formulation as a
generalized higher gauge theory.Comment: 40 page
On quantum non-signalling boxes
A classical non-signalling (or causal) box is an operation on classical
bipartite input with classical bipartite output such that no signal can be sent
from a party to the other through the use of the box. The quantum counterpart
of such boxes, i.e. completely positive trace-preserving maps on bipartite
states, though studied in literature, have been investigated less intensively
than classical boxes. We present here some results and remarks about such maps.
In particular, we analyze: the relations among properties as causality,
non-locality and entanglement; the connection between causal and entanglement
breaking maps; the characterization of causal maps in terms of the
classification of states with fixed reductions. We also provide new proofs of
the fact that every non-product unitary transformation is not causal, as well
as for the equivalence of the so-called semicausality and semilocalizability
properties.Comment: 18 pages, 7 figures, revtex
Asynchronous performance analysis of a single-phase capacitor-start, capacitor-run permanent magnet motor
This work presents a detailed analysis of the asynchronous torque components (average cage, magnet braking torque and pulsating) for a single-phase capacitor-start, capacitor-run permanent magnet motor. The computed envelope of pulsating torque superimposed over the average electromagnetic torque leads to an accurate prediction of starting torque. The developed approach is realized by means of a combination of symmetrical components and d-q axes theory and it can be extended for any m-phase AC motor - induction, synchronous reluctance or synchronous permanent magnet. The resultant average electromagnetic torque is determined by superimposing the asynchronous torques and magnet braking torque effects
Generalized quantum measurements and local realism
The structure of a local hidden variable model for experiments involving
sequences of measurements rigorously is analyzed. Constraints imposed by local
realism on the conditional probabilities of the outcomes of such measurement
schemes are explicitly derived. The violation of local realism in the case of
``hidden nonlocality'' is illustrated by an operational example.Comment: Revtex, 12 pages; Some modifications of introduction has been made; a
note stating that part of results had been obtained earlier by other authors,
has been added; one postscript figure available at request from
[email protected]
Implications of Teleportation for Nonlocality
Adopting an approach similar to that of Zukowski [Phys. Rev. A 62, 032101
(2000)], we investigate connections between teleportation and nonlocality. We
derive a Bell-type inequality pertaining to the teleportation scenario and show
that it is violated in the case of teleportation using a perfect singlet. We
also investigate teleportation using `Werner states' of the form x P + (1-x)
I/4, where P is the projector corresponding to a singlet state and I is the
identity. We find that our inequality is violated, implying nonlocality, if x >
1/sqrt(2). In addition, we extend Werner's local hidden variable model to
simulation of teleportation with the x = 1/2 Werner state. Thus teleportation
using this state does not involve nonlocality even though the fidelity achieved
is 3/4 which is greater than the `classical limit' of 2/3. Finally, we comment
on a result of Gisin's and offer some philosophical remarks on teleportation
and nonlocality generally.Comment: 10 pages, no figures. Title changed to accord with Phys. Rev. A
version. A note and an extra reference have been added. Journal reference
adde
Anisotropic Diffusion Limited Aggregation
Using stochastic conformal mappings we study the effects of anisotropic
perturbations on diffusion limited aggregation (DLA) in two dimensions. The
harmonic measure of the growth probability for DLA can be conformally mapped
onto a constant measure on a unit circle. Here we map preferred directions
for growth of angular width to a distribution on the unit circle which
is a periodic function with peaks in such that the width
of each peak scales as , where defines the
``strength'' of anisotropy along any of the chosen directions. The two
parameters map out a parameter space of perturbations that allows a
continuous transition from DLA (for or ) to needle-like fingers
as . We show that at fixed the effective fractal dimension of
the clusters obtained from mass-radius scaling decreases with
increasing from to a value bounded from below by
. Scaling arguments suggest a specific form for the dependence
of the fractal dimension on for large , form which compares
favorably with numerical results.Comment: 6 pages, 4 figures, submitted to Phys. Rev.
Torque behavior of one-phase permanent magnet AC motor
This paper presents a detailed comparative study of two starting and running methods for a single-phase permanent magnet synchronous motor, equipped with a squirrel-cage rotor. The analysis of the motor performance is realized for a pulse width modulated (PWM) inverter fed motor and for a capacitor-start, capacitor-run motor. The developed approach may be extended to any 1-phase ac motor—induction, synchronous reluctance or synchronous permanent magnet
Entanglement of pure states for a single copy
An optimal local conversion strategy between any two pure states of a
bipartite system is presented. It is optimal in that the probability of success
is the largest achievable if the parties which share the system, and which can
communicate classically, are only allowed to act locally on it. The study of
optimal local conversions sheds some light on the entanglement of a single copy
of a pure state. We propose a quantification of such an entanglement by means
of a finite minimal set of new measures from which the optimal probability of
conversion follows.Comment: Revtex, 4 pages, no figures. Minor changes. Appendix remove
Dust in dwarf galaxies: The case of NGC 4214
We have carried out a detailed modelling of the dust heating and emission in
the nearby, starbursting dwarf galaxy NGC 4214. Due to its proximity and the
great wealth of data from the UV to the millimeter range (from GALEX, HST, {\it
Spitzer}, Herschel, Planck and IRAM) it is possible to separately model the
emission from HII regions and their associated photodissociation regions (PDRs)
and the emission from diffuse dust. Furthermore, most model parameters can be
directly determined from the data leaving very few free parameters. We can fit
both the emission from HII+PDR regions and the diffuse emission in NGC 4214
with these models with "normal" dust properties and realistic parameters.Comment: 4pages, 3 figures. To appear in 'The Spectral Energy Distribution of
Galaxies' Proceedings IAU Symposium No 284, 201
- …