9,663 research outputs found

    Effect of Soil Buffer Capacity on Soil Reaction (pH) Modification and Subsequent Effects on Growth and Nutrient Uptake of Plantanus occidentalis L. Seedlings

    Get PDF
    The buffer capacity of a soil is a significant factor in determining the longevity of soil reaction (pH) adjustments by aluminum sulfate, Al2(SO4)3, or calcium carbonate, CaCO₂. After 12 weeks the modified pH values of the highly buffered Emory silt loam had changed substantially toward the original pH value of 7.6. Modified pH values for the Groseclose silt loam soil remained essentially unchanged under the same conditions. These differences in soil response to modified soil pH are related to the differences in the percentage of vermiculite chlorite and chlorite in the clay fractions of the two soils. The longevity of soil pH modification is related to total sycamore seedling dry weight and nutrient uptake. Though these components were significantly affected for plants grown in a Groseclose soil, the lack of significant response differences, except at the extremely low pH adjustment (5.21), in the Emory soil suggests a rapid change in modified soil pH toward the original soil pH value. The condition of the seedlings coupled with total dry weight accumulation and foliar nutrient content elimiates acid toxicity as a factor affecting growth and nutrient uptake. Plants grown in the Groseclose soil at pH 4.31 could be the exception

    Effect of Soil Buffer Capacity on Soil Reaction (pH) Modification and Subsequent Effects on Growth and Nutrient Uptake of Plantanus occidentalis L. Seedlings

    Get PDF
    The buffer capacity of a soil is a significant factor in determining the longevity of soil reaction (pH) adjustments by aluminum sulfate, Al2(SO4)3, or calcium carbonate, CaCO₂. After 12 weeks the modified pH values of the highly buffered Emory silt loam had changed substantially toward the original pH value of 7.6. Modified pH values for the Groseclose silt loam soil remained essentially unchanged under the same conditions. These differences in soil response to modified soil pH are related to the differences in the percentage of vermiculite chlorite and chlorite in the clay fractions of the two soils. The longevity of soil pH modification is related to total sycamore seedling dry weight and nutrient uptake. Though these components were significantly affected for plants grown in a Groseclose soil, the lack of significant response differences, except at the extremely low pH adjustment (5.21), in the Emory soil suggests a rapid change in modified soil pH toward the original soil pH value. The condition of the seedlings coupled with total dry weight accumulation and foliar nutrient content elimiates acid toxicity as a factor affecting growth and nutrient uptake. Plants grown in the Groseclose soil at pH 4.31 could be the exception

    The Low-level Spectrum of the W3W_3 String

    Get PDF
    We investigate the spectrum of physical states in the W3W_3 string theory, up to level 2 for a multi-scalar string, and up to level 4 for the two-scalar string. The (open) W3W_3 string has a photon as its only massless state. By using screening charges to study the null physical states in the two-scalar W3W_3 string, we are able to learn about the gauge symmetries of the states in the multi-scalar W3W_3 string.Comment: 31 pages, Plain Tex, CTP TAMU-70/92, Goteborg ITP 92-43, Imperial/TP/91-92/22, KCL-TH-92-

    Variant N=(1,1) Supergravity and (Minkowski)_4 x S^2 Vacua

    Full text link
    We construct the fermionic sector and supersymmetry transformation rules of a variant N=(1,1) supergravity theory obtained by generalized Kaluza-Klein reduction from seven dimensions. We show that this model admits both (Minkowski)_4 x S^2 and (Minkowski)_3 x S^3 vacua. We perform a consistent Kaluza-Klein reduction on S^2 and obtain D=4, N=2 supergravity coupled to a vector multiplet, which can be consistently truncated to give rise to D=4, N=1 supergravity with a chiral multiplet.Comment: Latex, 17 pages. Version appearing in Classical and Quantum Gravit

    Semi-infinite cohomology of W-algebras

    Full text link
    We generalize some of the standard homological techniques to \cW-algebras, and compute the semi-infinite cohomology of the \cW_3 algebra on a variety of modules. These computations provide physical states in \cW_3 gravity coupled to \cW_3 minimal models and to two free scalar fields.Comment: 15 page

    Fibre Bundles and Generalised Dimensional Reduction

    Get PDF
    We study some geometrical and topological aspects of the generalised dimensional reduction of supergravities in D=11 and D=10 dimensions, which give rise to massive theories in lower dimensions. In these reductions, a global symmetry is used in order to allow some of the fields to have a non-trivial dependence on the compactifying coordinates. Global consistency in the internal space imposes topological restrictions on the parameters of the compactification as well as the structure of the space itself. Examples that we consider include the generalised reduction of the type IIA and type IIB theories on a circle, and also the massive ten-dimensional theory obtained by the generalised reduction of D=11 supergravity.Comment: 23 pages, Late

    Rational W W algebras from composite operators

    Full text link
    Factoring out the spin 11 subalgebra of a W W algebra leads to a new W W structure which can be seen either as a rational finitely generated W W algebra or as a polynomial non-linear W W_\infty realization.Comment: 11 pages, LATEX, preprint ENSLAPP-AL-429/93 and NORDITA-93/47-

    Kaehler forms and cosmological solutions in type II supergravities

    Full text link
    We consider cosmological solutions to type II supergravity theories where the spacetime is split into a FRW universe and a K\"ahler space, which may be taken to be Calabi-Yau. The various 2-forms present in the theories are taken to be proportional to the K\"ahler form associated to the K\"ahler space.Comment: 6 pages, LaTeX2

    A Kolmogorov-Zakharov Spectrum in AdSAdS Gravitational Collapse

    Full text link
    We study black hole formation during the gravitational collapse of a massless scalar field in asymptotically AdSDAdS_D spacetimes for D=4,5D=4,5. We conclude that spherically symmetric gravitational collapse in asymptotically AdSAdS spaces is turbulent and characterized by a Kolmogorov-Zakharov spectrum. Namely, we find that after an initial period of weakly nonlinear evolution, there is a regime where the power spectrum of the Ricci scalar evolves as ωs\omega^{-s} with the frequency, ω\omega, and s1.7±0.1s\approx 1.7\pm 0.1.Comment: 5 pages, 4 figures. v2: Typos, other initial profile considered for universality, error analysis, close to PRL versio
    corecore