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Modification and Subsequent Effects on Growth and Nutrient

Uptake oiPlatanus occidentalis L.Seedlings
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Department of Horticulture and Forestry, University of Arkansas,
Fayetteville, Arkansas 72701

R. B. VASEY
School of Forest Resources and Conservation

VirginiaPolytechnic Institute and State University, Blacksburg, Virginia24061

ABSTRACT

The buffer capacity of a soil is a significant factor in determining the longevity of soil
reaction (pH) adjustments by aluminum sulfate, AMSO, )>, or calcium carbonate, CaCO>.
After 12 weeks the modified pH values of the highly buffered Emory silt loam had changed
substantially toward the original pH value of 7.6. Modified pH values for the Groseclose silt
loam soil remained essentially unchanged under the same conditions. These differences in
soil response to modified soil pH are related to the differences in the percentage of
verm iculite chlorite and chlorite inthe clay fractions of the twosoils.

The longevity of soil pH modification is related to total sycamore seedling dry weight and
nutrient uptake. Though these components were significantly affected for plants grown ina
Groseclose soil, the lack of significant response differences, except at the extremely low pH
adjustment (5.21), in the Emory soil suggests a rapid change inmodified soil pH toward the
original soil pH value.

The condition of the seedlings coupled with total dry weight accumulation and foliar
nutrient content elimiates acid toxicity as a factor affecting growth and nutrient uptake.
Plants grown inthe Groseclose soil at pH 4.31 could be the exception.

INTRODUCTION

Eost
published reports concerning soil pH modification have

ribed the time of effectiveness as the length of time required to

uce the initial desired pH change after amendment application
ch 1941. Coleman et al. 1958, Hall and Barker 1971). However,

only meager data have been presented to describe the longevity of
soil reaction modification (Coleman et al. 1958, Hutcheson and
Freeman 1965). Those data which are available are concerned
primarily with the effects of liming (Lund 1970, Reeve and Summer

f),White et al. 1970, Hall and Baker 1971) and supply little
rtnation about the period of time that "effective" soil acidifica-
can be expected to be maintained after applications of acidify-

materials.

The amount of an amendment required to raise or lower soil pHto

le desired value is dependent on the resistance of that soil to
anges inpH, i.e. buffer capacity (Buckman and Brady 1967). Other
tors being equal, (he buffer capacity is highly correlated with
ion exchange capacity (CEC) (Buckman and Brady 1967). Both

e CEC and the buffer capacity ofa soil are affected by changes in
IpH (de Villiers and Jackson 1967a), amount of organic matter
allsworth and Wilkinson 1958), clay content (McLean and Owen
>9), and type of clay (de Villiers and Jackson 1967b). Percentage
se saturation is linked to the degree of buffering (Peech 1941) and
tere extremes inbase saturation are found at high and low pH
ues, the buffer capacity of a soil is at its lowest (Mehlich 1941,

'eech 1941). Previous investigations on the effect ofsoil type and soil
action demonstrated that the drymatter accumulation of sycamore

seedlings [Platanus occidentalis L.I was affected significantly by
adjustments to soil pHfora Groseclose soil but not for anEmory soil
(Pope 1973). The lack of significant growth differences of sycamore
seedlings for adjusted pH levels of the Emory soil apparently was
related to a substantial change in the adjusted pH values toward the
original pH of the soil. The purpose of this report is to explain the
possible causes for the change in the adjusted pH values in the
Emory soil and to relate these facts to the growth response of
sycamore seedlings.

MATERIALSANDMETHODS

The soils used in this study were the Aihorizon of an Emory silt
loam derived from a colluvial limestone with an original pH of 7.6
and the Ap> horizon of a Groseclose silt loam derived from alluvial
deposition and having an original pH of 6.2 (Obenshain et al. 1%b).

Chemical and mechanical analyses were conducted by the Soils
Testing Laboratory, VirginiaPolytechnic Institute and State Univer-
sity, Blacksburg, Virginia. Identification of clay minerals was
achieved by the techniques of differential thermal analysis (DTA)
(Mackenzie 1957) and X-ray detraction (Brown 1961, Rich, 1969).
The soils were fertilized to an equivalent of 1000 lbs/acre of 10-10-10
commercial fertilizer and the soil pH was adjusted to either 4.25,
5.50, 6.75, or 8.00 by the addition of AMSCMs or CaCO, as
determined from a standard curve for each soil type. The standard
curves for the Groseclose and Emory soils were derived from the
procedures for soil pHadjustment described by Rich and Obenshain
(1955) an* Hutcheson and Freeman (1965). The soil pH was
determined after equilibration and after plant harvest by using a 1:1
ratio ofsoil to water. The initialpH was within ± 0.1 pH unit of the
desired value.

Sycamore seed was collected inmid-Aprilafter overwintering on
the tree. Aftergermination and the development of the first two true
leaves, the seedlings were transplanted into 6-in. (20-cm) pots
containing the fertilized and pH adjusted soil media. After 12 weeks
of growth, the plants were harvested and the total dry weight of the
plant determined by oven drying at 80C to a constant weight. The
foliage was analyzed for percentage nitrogen, phosphorus, and
potassium. Nitrogen was determined by the semi-micro Kjeldahl
technique, phosphorus by the ammonium-molybdate vanadate
method, and potassium by use of a flame photometer.

The experimental design was composed of 2 soil types, 4 pH
treatments, and 24 replications of 192 seedlings. Within a replication
the seedlings were located in a randomized complete block design.
The dependent variables were analyzed by an analysis of variance for
the independent variables replication, soil type, soil pH, and all
possible interactions. Variation about the mean values was examined
by use of Duncan's MultipleRange Test.
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RESULTS

Chemical, mechanical, and mineralogical data for the Groseclose
and Emory soils are reported in Table I. With regard to the chemical
characteristics, the Emory soil has ahigher pH value (7.58 vs. 6.15),
greater exchangeable calcium (11.49 vs. 2.82 milli-equivalents,
MEQ) and magnesium (3.41 vs. 0.66 MEQ), greater total exchange-
able cations (17.42 vs. 10.09 MEQ), and a greater percentage base
saturation (88.69 vs. 39.84%). The values for the exchangeable
cations, hydrogen (H)and aluminum (Al),are substantially greater in
the acid Groseclose soil.

The mechanical analyses show that the A,horizon of Emory soil
contains 20% more sand, 24% less silt, and 4% more clay than the
Ap>horizon of the Groseclose soil.

The mineralogical data indicate higher percentages of vermiculite-
chlorite and chlorite clay minerals in the Emory soil and a higher
percentage of vermiculite in the Groseclose soil.

The standard curves for soil acidification and liming (Fig. 1)
indicate that at the extremes in soilpH (below 5.0 and above 7.6) the
Groseclose soil exhibited a larger change inpH than did the Emory
when equivalent amounts of CaCOj or Al»(SO«)j were added. The
ability of the Emory soil to resist such pH changes suggests it has a
higher buffer capacity than the Groseclose soil in accordance with
Peech(1941).

There were pronounced differences between the initial and final
adjusted soilpHvalues for the two soils (Table II).For the Emory soil
the final pH approached the original pH of the soil. However, the
magnitude of difference decreased as the initial adjusted pH
approached the original soil pH.Incontrast, for the Groseclose soil,
the differences ininitialand final pHvalues were very small.

Plant dry weight and the percentage of foliar ash, nitrogen (N),
phosphorus (P), and potassium (K)were affected significantly by the
final soil pHvalue for a given soil type (Table III).Plant dry weight
was affected markedly by the adjusted pH levels in the Groseclose
soil. Plant dry weight increased from 0.49 grams at a pH of 4.31 to
8.91 grams at a pH of 6.67 and then declined to 7.72 grams at apH of
7.97. There were no significant differences in dry weight among
plants grown on the Emory soil adjusted to different pH values.
Reduced growth rate normally is accompanied by an increase in
percentage ash and inelemental levels if the plant is not subjected to
elemental deficiency.

The percentage ash declined to a constant level forallplants grown
at adjusted soil pH values greater than 4.31 in the Groseclose soil.
This trend isreversed for the Emory soil. Percentage ash was greatest
forplants grown at apH of 7.93 and declined toa constant level for
allplants grown at lowerpH values.

For the Groseclose soil, the percentage of foliar N and K
respectively decreased from a maximum of 3.61 and 2.73 to a
minimum of 3.00 and 1.81 as the adjusted soil pH increased. Soil pH
had little effect on the percentage of Nand K forplants grown on the
Emory soil. For the Groseclose soil, the concentration of foliar P
increased from a minimum of 0.32% at pH 4.31 to a maximum of
0.46% at pH 6.67, then declined to 0.38% at a soil pH of 7.97. The
foliar concentrations ofP were unaffected by the adjusted soil pH of
the Emorysoil except at apHof 6.13.

DISCUSSION

For the Emory soil, plant dry weight was not significantly different
over the range of adjusted soil pH levels because of the substantial
pH shift back toward the original pH. After adjustment, Hutcheson
and Freeman (1965) reported a rapid change insoil pH toward the
initial pHforboth limed and acidified plots ofaBurgin soil whichhas
properties approximating those of the Emory soil. Hutcheson and
Freeman concluded that such pHchanges occurred within6 weeks of
initial equilibration and were caused by the strong buffer capacity of
the soil. The similar soil characteristics of the Burgin and the Emory
soils plus the 12-week duration of this study suggest that the same
explanation may apply to the Emory soil. The differences in pH
response between the Emory and Groseclose soil can be explained in
terms of the differences inbuffer capacity at the extreme adjusted
levels ofsoil pH.

Obenshain et al. (1966) concluded that in CEC the two soil types
are not substantially different (18.7 for the Emory and 18.3 for the
Groseclose). The differences inthe buffering ability ofsoil cannot be
explained solely by differences in CEC but rather by the variables
which are important in the makeup of the soil CEC (Buckman and
Brady 1967), namely organic matter and clay (Hallsworth and
Wilkinson 1958, McLean and Owen 1969). Generally, the Emory soil
has a higher percentage of organic matter and clay than does the
Groseclose. These facts alone would suggest ahigher buffer capacity
for the Emory soil; however, on the basis of the CEC of the soil the
buffer capacity should notdiffer significantly, de Villiers and Jackson
(1967b) demonstrated that chloritized 2:1 layer silicates having an
initialhigh soil pH retained a large increment of the CEC as long as
the soil pH was not reduced below 5.0. Release of the initially
blocked isomorphous and interlayer substitional negative charge by
deprotonation of the positive hydroxyalumina in clays is the
indicated mechanism. Pionke and Corey (1967) found results similar
to those of de Villiers and Jackson (1967b) but with organic matter.
The mechanism of CEC retention and subsequent soil pH increase
may be operating inthe Emory soil.

The buffer capacity isrelated not only to clay and organic matter
but also to percentage base saturation and type of clay. The higher
percentage base saturation in the Emory soil under natural condi-
tions indicates that a larger number of cations can be fixed in the in-
terlayers of the clay minerals (Rich 1964). When soil pH is lowered
with Ali(SO«)i, the surface exchangeable cations are replaced by

AKOHlx polymers but the fixed cations are still present in the
interlayers (Rich 1964). The type of clay present will determine the
rapidity with which these interlayer cations can be replaced by HiO+
(Rich 1964). The higher natural pHof the Emory soil suggests ithas a
higher percentage base saturation. Itis generally reported that the
percentage of 2:1 clay is higher in the Emory soil (Obenshain et al.

i.O 7.0 h.O S.O 4.0

Figure 1. The standard curves for soil pH adjustment for a Grose-
close and an Emory soil by the addition of Ali(SO<)\ or CaCOi. (Soil
pH lowered below the original pH of the Emory (• ) and the Grose-
close (O)soils with Ali(SO<)iand raised above the original pH with
CaCO,.)
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1%6I. The facts suggest that a larger number of cations are trapped
in the clay interlayers and are released at low soil pH.

When cations are replaced from the interlayers. they may
deprotonate AKOHlxpolymers in clays or organic matter or replace

them altogether and increase the pH of the soil solution. From the
data presented by Obenshain et al. (1966) and on the basis of the
results of this study, it appears that the Emory soil is capable of
overriding changes in pH.

tfter
the changes in the adjusted pH values, the nutrients avail-

tor plant uptake were not appreciably different over the pH
;e for the Emory soil. In the Groseclose soil, where adjusted soil
did not change significantly with time, the ranges in available
ients, as reflected in foliar concentrations, were much wider and
ltedin significant differences inplant dry weights with changes in
pH. Although no chemical analyses were made for foliar content

luminum (Al)ormanganese (Mn), the general appearance of the
Ilings coupled with the growth rates and foliar nutrient contents

iicullyeliminates "acid toxicity" as a factor affecting growth and
nutrient uptake. Plants grown in the Groseclose soil atpH 4.31 could
be the possible exception.

CONCLUSIONS

The study findings support the idea that the buffer capacity of a
soil cannot be explained solely by its CEC. Other factors such as
percentage base saturation, organic matter, clay content, and types
of clay must also be considered. The buffer capacity of a soil is
responsible for the substantial changes in adjusted soil pH values

toward the initialpH,and frequent soil pH checks should be made in
studies where plant growth is measured inresponse to adjusted soil
pH. These results raise doubts about the conclusions drawn from
earlier studies (Kipps 1947, Vlamis 1953) where plant response to ad-
adjusted soil pH was investigated and final soilpH was not measured.
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A1.SO4
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Soil pH Means for Adjusted pH values Means for Adjusted pH values

Initial Final Initial Final

4.25 4.28 4.31 4.27 5.21

5.50 5.47 5.50 5.60 6.13

6.75 6.75 6.67 6.79 7.11

8.00 8.01 7.97 7.98 7.93

Table III.Effect of SoilType and Final Soil pHonDry Weight and Percentage ofFoliar Ash, Nitrogen, Phosphorus, and Potassium of Sycamore
Seedlings after 12 Weeks

Variables Groseclose Soil Emory Soil

Final soil pH 4.31 a 5.50 b 6.67 c 7.97 d 5.21 a 6.13 b 7.11 c 7.93 d

X Ash 13.86 a* 11.7 b 11.6 b 11.4 b 10.8 a* 10.8 a 10.7 a 11.6 b

% N 3.61 a 3.41 a 3.04 b 3.00 b 2.62 a 2.53 ab 2.46 b 2.49 b

% P .32 a .36 ab .46 b .38 b .35 a .41 b .38 a .36 a

% K 2.73 a 2.40 a 1.99 b 1.81 b 1.76 a 1.83 a 1.81 a 1.77 a

Plant
Dry Weight (g) 0.49 a 3.00 b 8.91 d 7.72 c 5.01 a 5.22 a 5.29 a 5.13 a

.
*Row values for a variable, over the pH range and within a soil type, not followed by the same letter

were significantly different at 0.01 for Duncan's Multiple Range Test.
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