9,140 research outputs found

    Piecewise Linear Accrual Models: do they really control for the asymmetric recognition of gains and losses?

    Get PDF
    The asymmetric recognition of gains and losses underlying conservative accounting is not taken into account by Jones (1991)-type accrual models. Recently, Moreira (2002) and Ball and Shivakumar (2005a) have proposed piecewise linear accrual models designed to control for this asymmetric impact. Our paper first discusses the sign of the expected measurement error in discretionary accruals (DAC) estimates when models do not control for the asymmetry underlying conservatism. We find that DAC in firms with bad news (BN) are expected to be understated, while those in good news (GN) firms will be overstated. Based on this original result we empirically test, using graphical and statistical tools, whether piecewise linear accrual models correct such a measurement error. The empirical evidence shows mixed results. For GN firms the estimates are corrected downwards, as expected; for BN firms, unexpectedly, part of the estimates is also corrected downwards. The reason for this unexpected result seems to lie in a non-linear relationship between accruals and the proxy for BN that the models are unable to control for. Thus, DAC estimates under piecewise linear models are not deemed to be of better quality than those of traditional accrual models.accrual models; piecewise linear accrual models; conservatism; earnings management

    Earnings Management to Avoid Losses: a cost of debt explanation

    Get PDF
    In this paper we analyze firms’ earnings management behavior to avoid losses conditional on the (asymmetric) incentive underlying market (positive/negative) returns. Our intuition is that firms with negative returns in the period (bad news, BN) face a higher incentive to undertake earnings management, and that their ultimate intention is to hide from credit markets a signal (loss) that could be translated into a negative impact on their cost of debt. The empirical evidence supports this intuition. BN firms show higher earnings management pervasiveness than their counterparts with good news (GN), and the set with simultaneous BN and prior period positive earnings undertake more pervasive earnings manipulation than BN firms in general. Within this restricted set of firms, and consistent with a cost of debt explanation, we find that firms with larger needs of debt show a higher incidence of earnings management to avoid losses. The overall empirical evidence challenges the implicit assumption in Burgstahler and Dichev (1997) that the incentive to manage earnings is homogeneous to all firms, and suggests that the discontinuities around zero in the earnings distributions are driven, at least partly, by firms’ earnings management behavior.earnings management, earnings thresholds, earnings discontinuities, cost of debt

    General Kerr-NUT-AdS Metrics in All Dimensions

    Full text link
    The Kerr-AdS metric in dimension D has cohomogeneity [D/2]; the metric components depend on the radial coordinate r and [D/2] latitude variables \mu_i that are subject to the constraint \sum_i \mu_i^2=1. We find a coordinate reparameterisation in which the \mu_i variables are replaced by [D/2]-1 unconstrained coordinates y_\alpha, and having the remarkable property that the Kerr-AdS metric becomes diagonal in the coordinate differentials dy_\alpha. The coordinates r and y_\alpha now appear in a very symmetrical way in the metric, leading to an immediate generalisation in which we can introduce [D/2]-1 NUT parameters. We find that (D-5)/2 are non-trivial in odd dimensions, whilst (D-2)/2 are non-trivial in even dimensions. This gives the most general Kerr-NUT-AdS metric in DD dimensions. We find that in all dimensions D\ge4 there exist discrete symmetries that involve inverting a rotation parameter through the AdS radius. These symmetries imply that Kerr-NUT-AdS metrics with over-rotating parameters are equivalent to under-rotating metrics. We also consider the BPS limit of the Kerr-NUT-AdS metrics, and thereby obtain, in odd dimensions and after Euclideanisation, new families of Einstein-Sasaki metrics.Comment: Latex, 24 pages, minor typos correcte

    Yang-Mills-Chern-Simons Supergravity

    Full text link
    N=(1,0) supergravity in six dimensions admits AdS_3\times S^3 as a vacuum solution. We extend our recent results presented in hep-th/0212323, by obtaining the complete N=4 Yang-Mills-Chern-Simons supergravity in D=3, up to quartic fermion terms, by S^3 group manifold reduction of the six dimensional theory. The SU(2) gauge fields have Yang-Mills kinetic terms as well as topological Chern-Simons mass terms. There is in addition a triplet of matter vectors. After diagonalisation, these fields describe two triplets of topologically-massive vector fields of opposite helicities. The model also contains six scalars, described by a GL(3,R)/SO(3) sigma model. It provides the first example of a three-dimensional gauged supergravity that can obtained by a consistent reduction of string-theory or M-theory and that admits AdS_3 as a vacuum solution. There are unusual features in the reduction from six-dimensional supergravity, owing to the self-duality condition on the 3-form field. The structure of the full equations of motion in N=(1,0) supergravity in D=6 is also elucidated, and the role of the self-dual field strength as torsion is exhibited.Comment: Latex, 22 pages, hep-th number correcte

    Variant N=(1,1) Supergravity and (Minkowski)_4 x S^2 Vacua

    Full text link
    We construct the fermionic sector and supersymmetry transformation rules of a variant N=(1,1) supergravity theory obtained by generalized Kaluza-Klein reduction from seven dimensions. We show that this model admits both (Minkowski)_4 x S^2 and (Minkowski)_3 x S^3 vacua. We perform a consistent Kaluza-Klein reduction on S^2 and obtain D=4, N=2 supergravity coupled to a vector multiplet, which can be consistently truncated to give rise to D=4, N=1 supergravity with a chiral multiplet.Comment: Latex, 17 pages. Version appearing in Classical and Quantum Gravit

    Compared to primaries, caucuses are less representative andmore likely to select an ideologically extreme nominee.

    Get PDF
    The next 19 months will see nearly endless speculation over the candidates and the outcome of the 2016 presidential election. But how important is the nomination process? In new research on presidential primaries and caucuses using data from the Cooperative Congressional Election Study, Christopher F. Karpowitz & Jeremy C. Pope find that compared to primaries, caucuses are seen by many voters as being less fair and more likely to advantage special interests, making them less representative, and more likely to attract more partisan voters. This in turn means that caucuses are more likely to select a more extreme nominee

    Statistical properties of an ideal subgrid-scale correction for Lagrangian particle tracking in turbulent channel flow

    Full text link
    One issue associated with the use of Large-Eddy Simulation (LES) to investigate the dispersion of small inertial particles in turbulent flows is the accuracy with which particle statistics and concentration can be reproduced. The motion of particles in LES fields may differ significantly from that observed in experiments or direct numerical simulation (DNS) because the force acting on the particles is not accurately estimated, due to the availability of the only filtered fluid velocity, and because errors accumulate in time leading to a progressive divergence of the trajectories. This may lead to different degrees of inaccuracy in the prediction of statistics and concentration. We identify herein an ideal subgrid correction of the a-priori LES fluid velocity seen by the particles in turbulent channel flow. This correction is computed by imposing that the trajectories of individual particles moving in filtered DNS fields exactly coincide with the particle trajectories in a DNS. In this way the errors introduced by filtering into the particle motion equations can be singled out and analyzed separately from those due to the progressive divergence of the trajectories. The subgrid correction term, and therefore the filtering error, is characterized in the present paper in terms of statistical moments. The effects of the particle inertia and of the filter type and width on the properties of the correction term are investigated.Comment: 15 pages,24 figures. Submitted to Journal of Physics: Conference Serie

    The general form of supersymmetric solutions of N=(1,0) U(1) and SU(2) gauged supergravities in six dimensions

    Full text link
    We obtain necessary and sufficient conditions for a supersymmetric field configuration in the N=(1,0) U(1) or SU(2) gauged supergravities in six dimensions, and impose the field equations on this general ansatz. It is found that any supersymmetric solution is associated to an SU(2)⋉R4SU(2)\ltimes \mathbb{R}^4 structure. The structure is characterized by a null Killing vector which induces a natural 2+4 split of the six dimensional spacetime. A suitable combination of the field equations implies that the scalar curvature of the four dimensional Riemannian part, referred to as the base, obeys a second order differential equation. Bosonic fluxes introduce torsion terms that deform the SU(2)⋉R4SU(2)\ltimes\mathbb{R}^4 structure away from a covariantly constant one. The most general structure can be classified in terms of its intrinsic torsion. For a large class of solutions the gauge field strengths admit a simple geometrical interpretation: in the U(1) theory the base is K\"{a}hler, and the gauge field strength is the Ricci form; in the SU(2) theory, the gauge field strengths are identified with the curvatures of the left hand spin bundle of the base. We employ our general ansatz to construct new supersymmetric solutions; we show that the U(1) theory admits a symmetric Cahen-Wallach4×S2_4\times S^2 solution together with a compactifying pp-wave. The SU(2) theory admits a black string, whose near horizon limit is AdS3×S3AdS_3\times S_3. We also obtain the Yang-Mills analogue of the Salam-Sezgin solution of the U(1) theory, namely R1,2×S3R^{1,2}\times S^3, where the S3S^3 is supported by a sphaleron. Finally we obtain the additional constraints implied by enhanced supersymmetry, and discuss Penrose limits in the theories.Comment: 1+29 pages, late

    From p-branes to Cosmology

    Get PDF
    We study the relationship between static p-brane solitons and cosmological solutions of string theory or M-theory. We discuss two different ways in which extremal p-branes can be generalised to non-extremal ones, and show how wide classes of recently discussed cosmological models can be mapped into non-extremal p-brane solutions of one of these two kinds. We also extend previous discussions of cosmological solutions to include some that make use of cosmological-type terms in the effective action that can arise from the generalised dimensional reduction of string theory or M-theory.Comment: Latex, 24 pages, no figur

    AdS and Lifshitz Black Holes in Conformal and Einstein-Weyl Gravities

    Get PDF
    We study black hole solutions in extended gravities with higher-order curvature terms, including conformal and Einstein-Weyl gravities. In addition to the usual AdS vacuum, the theories admit Lifshitz and Schr\"odinger vacua. The AdS black hole in conformal gravity contains an additional parameter over and above the mass, which may be interpreted as a massive spin-2 hair. By considering the first law of thermodynamics, we find that it is necessary to introduce an associated additional intensive/extensive pair of thermodynamic quantities. We also obtain new Liftshitz black holes in conformal gravity and study their thermodynamics. We use a numerical approach to demonstrate that AdS black holes beyond the Schwarzschild-AdS solution exist in Einstein-Weyl gravity. We also demonstrate the existence of asymptotically Lifshitz black holes in Einstein-Weyl gravity. The Lifshitz black holes arise at the boundary of the parameter ranges for the AdS black holes. Outside the range, the solutions develop naked singularities. The asymptotically AdS and Lifshitz black holes provide an interesting phase transition, in the corresponding boundary field theory, from a relativistic Lorentzian system to a non-relativistic Lifshitz system.Comment: typos corrected, references adde
    • 

    corecore