18 research outputs found

    Simulation and motion study of mechanical integrator 3D model

    Get PDF
    Mehanički integrator je mehanički uređaj pomoću koga se vrši kontinualna integracija ulazne promenljive veličine. Ovaj rad objašnjava operativne principe i otkriva rezultate simulacije i kretanja u sklopu 3D modela mehaničkog integratora. Konkretno, kreirani su 3D modeli generatora ulaznih funkcija, integratora tipa 'lopta sa diskom' i x-y izlaznog plotera, a izvršena je i simulacija njihovih kretanja i operacija. Ovaj rad je značajan uglavnom za obrazovanje u oblastima 3D solid modeliranja, sinteze mehanizama i naučne vizuelizacije kretanja i rada mehanizma. Konkretno, analiza kretanja predstavljena u ovom radu vizualizuje i otkriva međusobni odnos između integrisanja kao apstraktne matematičke operacije i geometrijskih i kinematičkih karakteristika jednog posebnog tipa mehaničkog uređaja za računanje.A Mechanical Integrator is a mechanical device which can be used to obtain the continual integration of the input variable value. This paper explains the operational principles and discloses the simulation and motion study results of the mechanical integrator 3D model assembly. Specifically, 3D models of the input function generator, the ball and disc integrator and the output x-y plotter are created and their operations are simulated. This work is significant mainly for education in the fields of solid modelling, mechanism synthesis and scientific visualization of the mechanism motion and operation. In particular, the motion analysis presented in this paper visualizes and discloses the mutual relationship between the integration calculus as the mathematical operation and the geometrical and kinematical characteristics of one special type of mechanical computing device

    Simulation and motion study of mechanical integrator 3D model

    Get PDF
    Mehanički integrator je mehanički uređaj pomoću koga se vrši kontinualna integracija ulazne promenljive veličine. Ovaj rad objašnjava operativne principe i otkriva rezultate simulacije i kretanja u sklopu 3D modela mehaničkog integratora. Konkretno, kreirani su 3D modeli generatora ulaznih funkcija, integratora tipa 'lopta sa diskom' i x-y izlaznog plotera, a izvršena je i simulacija njihovih kretanja i operacija. Ovaj rad je značajan uglavnom za obrazovanje u oblastima 3D solid modeliranja, sinteze mehanizama i naučne vizuelizacije kretanja i rada mehanizma. Konkretno, analiza kretanja predstavljena u ovom radu vizualizuje i otkriva međusobni odnos između integrisanja kao apstraktne matematičke operacije i geometrijskih i kinematičkih karakteristika jednog posebnog tipa mehaničkog uređaja za računanje.A Mechanical Integrator is a mechanical device which can be used to obtain the continual integration of the input variable value. This paper explains the operational principles and discloses the simulation and motion study results of the mechanical integrator 3D model assembly. Specifically, 3D models of the input function generator, the ball and disc integrator and the output x-y plotter are created and their operations are simulated. This work is significant mainly for education in the fields of solid modelling, mechanism synthesis and scientific visualization of the mechanism motion and operation. In particular, the motion analysis presented in this paper visualizes and discloses the mutual relationship between the integration calculus as the mathematical operation and the geometrical and kinematical characteristics of one special type of mechanical computing device

    A 3D analysis of geometrical factors and their influence on air flow around a satellite dish

    Get PDF
    Ovaj rad se bavi problematikom geometrijskih karakteristika satelitske antene i uticajem tih karakteristika na funkcionalnost i bezbednost. U okviru rada je izvršeno formiranje određenog broja 3D modela satelitske antene. Svi modeli su formirani u softverskom programu SolidWorks, i u istom programskom paketu izvršene su analize opstrujavanja vazduha oko antene za uslove na teritoriji grada Beograda. Analizom modela došlo se do zaključka kao bi bilo najsvrsishodnije prilagoditi geometrijske karakteristike satelitske antene da bi konačan proizvod ispunjavao funkcionalne i bezbednosne zahteve. Analiza je bazirana na laboratorijskim ispitivanjima, koja su sprovedena na satelitskim antenama. Tom prilikom došlo se do zaključka da geometrijske karakteristike same antene u velikoj meri utiču na funkcionalnost i bezbednost proizvoda. Radi jednostavnijeg i, u krajnjoj meri, finansijski opravdanijeg pristupa izradi konačnog proizvoda-satelitske antene, osnovna analiza je izvršena na 3D modelima, na kojima su rađene promene geometrijskih karakteristika. Modeli su analizirani i dobijeno je optimalno rešenje, od koga može da se napravi konačan proizvod. Rad pokazuje opravdanost formiranja 3D modela, njegove analize i pokazuje jednostavnost promene geometrije proizvoda. U veoma velikoj meri dobija se konačni proizvod koji je ispitan u uslovima bliskim realnom sistemu u kom proizvod treba da funkcioniše.This paper deals with the geometrical characteristics and their influence on the functionality and safety of satellite dishes. Within the paper, a number of 3D models of satellite dishes were formed. All models were established in the software program SolidWorks, and the same software package was used for the analysis of the air flow over the satellite antenna for the conditions at the territory of Belgrade. The analysis of the model provides an insight into the geometrical characteristics of the satellite dishes which would be the most appropriate to adopt in accordance with the requirements of the final product functionality and security. The analysis is based on laboratory tests, which were conducted on satellite dishes. On that occasion, it was concluded that the geometrical characteristics of the antenna itself greatly affect the functionality and safety. In order to simplify and to make a better financial approach to designing the final product-satellite dish, a basic analysis was carried out on the 3D models whose geometric characteristics can be changed . The models were analyzed to yield an optimal solution, since it is possible to get the final product. The paper justifies forming a 3D model and analysing it, and shows the simplicity of the product geometry changes. The obtained final product is to a very large extent functional since it has been tested in the conditions - +-close to the real system where the product should operate

    CAD, CAE and rapid prototyping methods applied in long bones orthopaedics

    Get PDF
    U radu su prikazane metode za analizu ljudskih koštanih zglobova. Prvo, upotrebom CT slika, definisani su 'čvrsti' delovi kao glavne komponente kosti i 'meki' delovi kao što su ligamenti ili meniskusi. Ove komponente uvoze se u modul za montažu parametrizovanog okruženja i dobija se biomehanički model ljudskog hoda, koji se izvozi u kinematsko simulaciono okruženje i koristi za analizu konačnim elementima, gde se prvo definišu kinematski parametri. Sa ovako definisanim parametrima može se izvršiti zamena kinematskih i dinamičkih simulacija podsistema klasičnim, normalnim kretanjem. Nakon interpretacije rezultata, mogu se modifikovati početni parametri biomehaničkih podsistema. U sledećoj fazi, komponente podsistema su podeljene sukcesivno i dobijena je struktura konačnih elemenata za ceo biomehanički sistem spojeva koji učestvuju u ljudskoj lokomociji.The paper presents some methods used to analyze human bone joints. First, there were defined the 'hard' parts as the main bone components and 'soft' parts as ligaments or menisci using CT images. These components are imported into a parameterized environment assembly module and a biomechanical model of human walking is being obtained, which is exported to a kinematic simulation environment and finite element analysis, where first the kinematic parameters are defined. With these defined parameters, the kinematic and dynamic simulation of the subsystems for classical, normal motion can be switched. Following the interpretation of the results, the initial parameters of the biomechanical subsystems may be modified. In the next phase, the components of the subsystems are divided successively and the finite element structure is obtained for the entire biomechanical system of the joints that participate in human locomotion

    CAD, CAE and rapid prototyping methods applied in long bones orthopaedics

    Get PDF
    U radu su prikazane metode za analizu ljudskih koštanih zglobova. Prvo, upotrebom CT slika, definisani su 'čvrsti' delovi kao glavne komponente kosti i 'meki' delovi kao što su ligamenti ili meniskusi. Ove komponente uvoze se u modul za montažu parametrizovanog okruženja i dobija se biomehanički model ljudskog hoda, koji se izvozi u kinematsko simulaciono okruženje i koristi za analizu konačnim elementima, gde se prvo definišu kinematski parametri. Sa ovako definisanim parametrima može se izvršiti zamena kinematskih i dinamičkih simulacija podsistema klasičnim, normalnim kretanjem. Nakon interpretacije rezultata, mogu se modifikovati početni parametri biomehaničkih podsistema. U sledećoj fazi, komponente podsistema su podeljene sukcesivno i dobijena je struktura konačnih elemenata za ceo biomehanički sistem spojeva koji učestvuju u ljudskoj lokomociji.The paper presents some methods used to analyze human bone joints. First, there were defined the 'hard' parts as the main bone components and 'soft' parts as ligaments or menisci using CT images. These components are imported into a parameterized environment assembly module and a biomechanical model of human walking is being obtained, which is exported to a kinematic simulation environment and finite element analysis, where first the kinematic parameters are defined. With these defined parameters, the kinematic and dynamic simulation of the subsystems for classical, normal motion can be switched. Following the interpretation of the results, the initial parameters of the biomechanical subsystems may be modified. In the next phase, the components of the subsystems are divided successively and the finite element structure is obtained for the entire biomechanical system of the joints that participate in human locomotion

    Scoala de Iarna BRAN 2020

    No full text

    Influence of Contact Surfaces’ Impact on the Gear Profile during Hobbing Process

    No full text
    This work is the result of research on the dynamic process that occurs during milling machining, namely, the influence of the contact surfaces’ impact on the gear and the hob and the influence of their displacements on the resulting profile of the tooth. An acquisition system was placed on the final elements of the milling machine chain to determine the torque moments and displacements during gear milling. The experimental analysis proves that the displacements are within admissible limits and have no major influence on the quality of the processing surfaces. A dynamic simulation of the hobbing process with the finite element method (ANSYS) was performed for a limited period of time, and the values of deformation, equivalent strain, and stress have been determined; the time at which the chips come off and the corresponding value of the equivalent stress that occurs at their break were determined based on the maximum distortion energy von Misses theory. It is required to simulate the entire hobbing process, even if it can be time-consuming to differentiate the influence of the dynamic behavior of the machine’s kinematic supplementary chains on the hob wear and the tooth profile. A modal analysis will be able to support the comparative study related to the obtained experimental data

    VIRTUAL TEST APPLIED ON A 3D MODEL OF VERTEBRAL COLUMN

    No full text
    In this paper we have detailed the CAD methods that led to the obtaining of vertebrae and intervertebral discs. Initially, all the vertebrae from a corpse were scanned three-dimensionally. These models have been taken over in the Geomagic program where replenishment, triangle reduction and finishing techniques have been applied. These surface models were imported into SolidWorks where they were transformed into virtual solids. In the Assembly module, all the virtual vertebrae were loaded where they were positioned anatomically. A system of vertebrae L4, L5 and intervertebral disc was analyzed in Ansys Workbench. Finally, important conclusions were drawn
    corecore