13 research outputs found

    Polyphasic re-examination of Debaryomyces hansenii strains and reinstatement of D. hansenii, D. fabryi and D. subglobosus

    Get PDF
    The type species of the genus Debaryomyces, Debaryomyces hansenii, is a highly heterogeneous species. It has been isolated from a large diversity of natural sources including fruit, air, water, soil, but most frequently from processed food products. The species delineation of this yeast species urgently needs clarification. The heterogeneity in taxonomic characteristics has resulted in the description of varieties linked to D. hansenii. The aim of this study was to re-examine and classify D. hansenii using a polyphasic approach. A total of 65 D. hansenii isolates were examined, 57 representing the variety hansenii and nine the variety fabryi. The selection of strains for DNA reassociation and phylogenetic analysis was based on polymerase chain reaction mediated fingerprints using four mini- and microsatellite-specific primers. The discriminating power of growth at 35 °C and 37 °C was re-examined and ascospore production was observed. DNA reassociations and phylogenetic analyses were performed on selected isolates from each of the clusters obtained from the DNA fingerprint analyses. The data indicated the presence of three distinct species within the D. hansenii group, which were represented by type strains of former species and that are proposed to be reinstated: D. hansenii (CBS 767T = MUCL 49680T), D. fabryi (CBS 789T = MUCL 49731T) and D. subglobosus (CBS 792T = MUCL 49732T)

    Nanophononics: state of the art and perspectives

    Full text link

    Adherence and Proliferation of Endothelial Cells on Surface-Immobilized Albumin-Heparin Conjugate

    Get PDF
    Small-diameter vascular grafts rapidly fail after implantation, due to occlusion caused by thrombosis. This problem cannot be overcome using medication. A promising improvement of graft patency is the seeding of endothelial cells (EC) on the luminal surface of the vascular graft. Conjugates of albumin and heparin, which were developed to obtain nonthrombogenic coatings, could form an ideal coating for vascular grafts. Besides presenting anticoagulant function, heparin will bind proteins with cell adhesive properties, thus facilitating adherence of EC to the graft surface. EC were able to grow to confluency on CO2 gas plasma–treated polystyrene (PS-CO2) coated with albumin-heparin conjugate. CO2 gas plasma treatment resulted in the introduction of functional groups at the surface (e.g., hydroxyl, aldehyde, carboxylic acid, and epoxide groups). Addition of albumin-heparin conjugate to the functionalized surface in an aqueous solution with pH 8.2 yielded a stable monolayer of covalently bound conjugate. The number of cells adhering and proliferating on this surface was comparable to the number of cells on fibronectin-coated PS-CO2. However, the structure and size of EC proliferating on surface-immobilized albumin-heparin was more irregular. Long-term adherence might be improved by adding fibronectin to the albumin-heparin surface, either as a mixture with albumin-heparin or in a separate incubation step
    corecore