29 research outputs found

    Analysis of urinary oligosaccharides in lysosomal storage disorders by capillary high-performance anion-exchange chromatography–mass spectrometry

    Get PDF
    Many lysosomal storage diseases are characterized by an increased urinary excretion of glycoconjugates and oligosaccharides that are characteristic for the underlying enzymatic defect. Here, we have used capillary high-performance anion-exchange chromatography (HPAEC) hyphenated to mass spectrometry to analyze free oligosaccharides from urine samples of patients suffering from the lysosomal storage disorders fucosidosis, α-mannosidosis, GM1-gangliosidosis, GM2-gangliosidosis, and sialidosis. Glycan fingerprints were registered, and the patterns of accumulated oligosaccharides were found to reflect the specific blockages of the catabolic pathway. Our analytical approach allowed structural analysis of the excreted oligosaccharides and revealed several previously unpublished oligosaccharides. In conclusion, using online coupling of HPAEC with mass spectrometric detection, our study provides characteristic urinary oligosaccharide fingerprints with diagnostic potential for lysosomal storage disorders

    Quantification of sulfatides and lysosulfatides in tissues and body fluids by liquid chromatography-tandem mass spectrometry

    Get PDF
    Sulfatides are found in brain as components of myelin, oligodendrocytes, and neurons but are also present in various visceral tissues. Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disorder caused by a deficiency of arylsulfatase A, leading to severe white matter disease due to the accumulation of sulfatides and lysosulfatides. To study the physiological role of sulfatides, accessible and sensitive quantitative methods are required. We developed a sensitive LC/MS/MS method to quantify total sulfatide and lysosulfatide content as well as individual molecular species in urine and plasma from MLD patients and plasma and tissues from an MLD mouse model. Our results demonstrate that the method can quantify a wide range of sulfatide concentrations and can be used to quantify total sulfatide content and levels of individual molecular species of sulfatides in tissues, cells, and body fluids. Even though plasma sulfatides and lysosulfatides would seem attractive candidate biomarkers that could possibly correlate with the severity of MLD and be of use to monitor the effects of therapeutic intervention, our results indicate that it is unlikely that the determination of these storage products in plasma will be useful in this respec

    Cord blood Clara cell protein CC16 predicts the development of bronchopulmonary dysplasia

    No full text
    Clara cell protein (CC16) is an anti-inflammatory protein and a biomarker of pulmonary epithelial cells and alveolocapillary membrane injury in adults. We investigated whether low cord blood concentrations of CC16 are associated with the development of respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) in preterm infants and the relationship between CC16 and its pro-inflammatory counterpart, the secretory phospholipase A(2) (sPLA(2)) enzyme. CC16 concentration, sPLA(2) activity and IL-6 concentration were measured in cord blood plasma from 79 preterm infants (25 controls, 37 infants who developed RDS and 17 infants who developed BPD). After adjustment for gestational age and Apgar score at 5 min, the CC16 concentration was lower in BPD infants than in preterm controls (p < 0.01). sPLA(2) activity was similar in all groups and the IL-6 concentrations were increased in both RDS and BPD infants (p < 0.01 and p < 0.05, respectively, vs. controls). We conclude that low cord blood CC16 concentrations in preterm infants independently predict the development of BPD. Low CC16 levels may reflect early lung injury, which contributes to the severity of RDS and progress towards BPD. Future studies are needed to assess whether the early administration of recombinant human CC16 in preterm infants with low cord blood CC16 prevents the development of BPD

    Inhaled nitric oxide attenuates pulmonary inflammation and fibrin deposition and prolongs survival in neonatal hyperoxic lung injury

    No full text
    Administration of inhaled nitric oxide (iNO) is a potential therapeutic strategy to prevent bronchopulmonary dysplasia (BPD) in premature newborns with respiratory distress syndrome. We evaluated this approach in a rat model, in which premature pups were exposed to room air, hyperoxia, or a combination of hyperoxia and NO (8.5 and 17 ppm). We investigated the anti-inflammatory effects of prolonged iNO therapy by studying survival, histopathology, fibrin deposition, and differential mRNA expression (real-time RT-PCR) of key genes involved in the development of BPD. iNO therapy prolonged median survival 1.5 days (P = 0.0003), reduced fibrin deposition in a dosage-dependent way up to 4.3-fold (P <0.001), improved alveolar development by reducing septal thickness, and reduced the influx of leukocytes. Analysis of mRNA expression revealed an iNO-induced downregulation of genes involved in inflammation (IL-6, cytokine-induced neutrophilic chemoattractant-1, and amphiregulin), coagulation, fibrinolysis (plasminogen activator inhibitor 1 and urokinase-type plasminogen activator receptor), cell cycle regulation (p21), and an upregulation of fibroblast growth factor receptor-4 (alveolar formation). We conclude that iNO therapy improves lung pathology and prolongs survival by reducing septum thickness, inhibiting inflammation, and reducing alveolar fibrin deposition in premature rat pups with neonatal hyperoxic lung injur

    Plasma globotriaosylsphingosine in relation to phenotypes of Fabry disease

    No full text
    Fabry disease (FD), a lysosomal storage disorder caused by α-galactosidase A (GLA) gene variants, has a heterogeneous phenotype. GLA variants can lead to classical FD, an attenuated non-classical phenotype, or no disease at all. This study investigates the value of plasma globotriaosylsphingosine (lysoGb3) to distinguish between these groups. This is of particular importance in the diagnosis of individuals with a GLA variant and an uncertain diagnosis of FD, lacking characteristic features of classical FD. Subjects with GLA variants were grouped as classical, non-classical, uncertain or no FD, using strict phenotypical, biochemical and histological criteria. Plasma lysoGb3 was assessed by LC/MS/MS (normal ≤ 0.6 nmol/L). 154 subjects were grouped into classical (38 males (M), 66 females (F)), non-classical (13 M, 14 F), uncertain (5M, 9 F) or no FD (6M, 3F). All subjects with a classical phenotype had elevated lysoGb3 values (M: range 45-150, F: 1.5-41.5). LysoGb3 values in patients with a non-classical phenotype (M: 1.3-35.7, F: 0.5-2.0) were different from healthy controls (M: p <0.01, F: p <0.05), but females overlapped with controls. In the no-FD group, lysoGb3 was normal. LysoGb3 is a reliable diagnostic tool to discern classical FD from subjects without FD. This study suggests that the same applies to patients with a non-classical phenotype. LysoGb3 values of female patients overlap with controls. Consequently, in uncertain cases, increased lysoGb3 values are very suggestive for FD, but normal values cannot exclude FD. Confirmation in larger cohorts and data on the specificity of small lysoGb3 increases are necessar

    Late-onset MNGIE due to partial loss of thymidine phosphorylase activity

    No full text
    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is caused by mutations in the gene encoding thymidine phosphorylase (TP). All MNGIE patients have had severe loss of TP function and prominent plasma accumulations of the TP substrates thymidine (dThd) and deoxyuridine (dUrd). Here, we report for the first time to our knowledge three MNGIE patients with later onset, milder phenotype, and less severe TP dysfunction, compared with typical MNGIE patients. This report demonstrates a direct relationship between the biochemical defects and clinical phenotypes in MNGIE and supports the notion that reduction of dThd and dUrd accumulation or TP replacement could be useful therapy for MNGI
    corecore