72 research outputs found

    Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in chickpea

    Get PDF
    Genomic selection (GS) by selecting lines prior to field phenotyping using genotyping data has the potential to enhance the rate of genetic gains. Genotype × environment (G × E) interaction inclusion in GS models can improve prediction accuracy hence aid in selection of lines across target environments. Phenotypic data on 320 chickpea breeding lines for eight traits for three seasons at two locations were recorded. These lines were genotyped using DArTseq (1.6 K SNPs) and Genotyping-by-Sequencing (GBS; 89 K SNPs). Thirteen models were fitted including main effects of environment and lines, markers, and/or naïve and informed interactions to estimate prediction accuracies. Three cross-validation schemes mimicking real scenarios that breeders might encounter in the fields were considered to assess prediction accuracy of the models (CV2: incomplete field trials or sparse testing; CV1: newly developed lines; and CV0: untested environments). Maximum prediction accuracies for different traits and different models were observed with CV2. DArTseq performed better than GBS and the combined genotyping set (DArTseq and GBS) regardless of the cross validation scheme with most of the main effect marker and interaction models. Improvement of GS models and application of various genotyping platforms are key factors for obtaining accurate and precise prediction accuracies, leading to more precise selection of candidates

    Whole genome resequencing and phenotyping of MAGIC population for high resolution mapping of drought tolerance in chickpea

    Get PDF
    Terminal drought is one of the major constraints to crop production in chickpea (Cicer arietinum L.). In order to map drought tolerance related traits at high resolution, we sequenced multi-parent advanced generation intercross (MAGIC) population using whole genome resequencing approach and phenotyped it under drought stress environments for two consecutive years (2013-14 and 2014-15). A total of 52.02 billion clean reads containing 4.67 TB clean data were generated on the 1136 MAGIC lines and eight parental lines. Alignment of clean data on to the reference genome enabled identification of a total, 932,172 of SNPs, 35,973 insertions, and 35,726 deletions among the parental lines. A high-density genetic map was constructed using 57,180 SNPs spanning a map distance of 1606.69 cM. Using compressed mixed linear model, genome-wide association study (GWAS) enabled us to identify 737 markers significantly associated with days to 50% flowering, days to maturity, plant height, 100 seed weight, biomass, and harvest index. In addition to the GWAS approach, an identity-by-descent (IBD)-based mixed model approach was used to map quantitative trait loci (QTLs). The IBD-based mixed model approach detected major QTLs that were comparable to those from the GWAS analysis as well as some exclusive QTLs with smaller effects. The candidate genes like FRIGIDA and CaTIFY4b can be used for enhancing drought tolerance in chickpea. The genomic resources, genetic map, marker-trait associations, and QTLs identified in the study are valuable resources for the chickpea community for developing climate resilient chickpeas

    Novel SSR Markers from BAC-End Sequences, DArT Arrays and a Comprehensive Genetic Map with 1,291 Marker Loci for Chickpea (Cicer arietinum L.)

    Get PDF
    Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C. arietinum)×PI 489777 (C. reticulatum). A BAC-library comprising 55,680 clones was constructed and 46,270 BESs were generated. Mining of these BESs provided 6,845 SSRs, and primer pairs were designed for 1,344 SSRs. In parallel, DArT arrays with ca. 15,000 clones were developed, and 5,397 clones were found polymorphic among 94 genotypes tested. Screening of newly developed BES-SSR markers and DArT arrays on the parental genotypes of the RIL mapping population showed polymorphism with 253 BES-SSR markers and 675 DArT markers. Segregation data obtained for these polymorphic markers and 494 markers data compiled from published reports or collaborators were used for constructing the genetic map. As a result, a comprehensive genetic map comprising 1,291 markers on eight linkage groups (LGs) spanning a total of 845.56 cM distance was developed (http://cmap.icrisat.ac.in/cmap/sm/cp/thudi/). The number of markers per linkage group ranged from 68 (LG 8) to 218 (LG 3) with an average inter-marker distance of 0.65 cM. While the developed resource of molecular markers will be useful for genetic diversity, genetic mapping and molecular breeding applications, the comprehensive genetic map with integrated BES-SSR markers will facilitate its anchoring to the physical map (under construction) to accelerate map-based cloning of genes in chickpea and comparative genome evolution studies in legumes

    Functional dissection of the chickpea (Cicer arietinum l.) stay-green phenotype associated with molecular variation at an ortholog of mendel’s i gene for cotyledon color: Implications for crop production and carotenoid biofortification

    Get PDF
    “Stay-green” crop phenotypes have been shown to impact drought tolerance and nutritional content of several crops. We aimed to genetically describe and functionally dissect the particular stay-green phenomenon found in chickpeas with a green cotyledon color of mature dry seed and investigate its potential use for improvement of chickpea environmental adaptations and nutritional value. We examined 40 stay-green accessions and a set of 29 BC2F4-5 stay-green introgression lines using a stay-green donor parent ICC 16340 and two Indian elite cultivars (KAK2, JGK1) as recurrent parents. Genetic studies of segregating populations indicated that the green cotyledon trait is controlled by a single recessive gene that is invariantly associated with the delayed degreening (extended chlorophyll retention). We found that the chickpea ortholog of Mendel’s I locus of garden pea, encoding a SGR protein as very likely to underlie the persistently green cotyledon color phenotype of chickpea. Further sequence characterization of this chickpea ortholog CaStGR1 (CaStGR1, for carietinum stay-green gene 1) revealed the presence of five different molecular variants (alleles), each of which is likely a loss-of-function of the chickpea protein (CaStGR1) involved in chlorophyll catabolism. We tested the wild type and green cotyledon lines for components of adaptations to dry environments and traits linked to agronomic performance in different experimental systems and different levels of water availability. We found that the plant processes linked to disrupted CaStGR1 gene did not functionality affect transpiration efficiency or water usage. Photosynthetic pigments in grains, including provitaminogenic carotenoids important for human nutrition, were 2–3-fold higher in the stay-green type. Agronomic performance did not appear to be correlated with the presence/absence of the stay-green allele. We conclude that allelic variation in chickpea CaStGR1 does not compromise traits linked to environmental adaptation and agronomic performance, and is a promising genetic technology for biofortification of provitaminogenic carotenoids in chickpea

    Allelic relationships of flowering time genes in chickpea

    Get PDF
    Flowering time and crop duration are the most important traits for adaptation of chickpea (Cicer arietinum L.) to different agro-climatic conditions. Early flowering and early maturity enhance adaptation of chickpea to short season environments. This study was conducted to establish allelic relationships of the early flowering genes of ICC 16641, ICC 16644 and ICCV 96029 with three known early flowering genes, efl-1 (ICCV 2), ppd or efl-2 (ICC 5810), and efl-3 (BGD 132). In all cases, late flowering was dominant to early-flowering. The results indicated that the efl-1 gene identified from ICCV 2 was also present in ICCV 96029, which has ICCV 2 as one of the parents in its pedigree. ICC 16641 and ICC 16644 had a common early flowering gene which was not allelic to other reported early flowering genes. The new early flowering gene was designated efl-4. In most of the crosses, days to flowering was positively correlated with days to maturity, number of pods per plant, number of seeds per plant and seed yield per plant and negatively correlated or had no correlation with 100-seed weight. The double-pod trait improved grain yield per plant in the crosses where it delayed maturity. The information on allelic relationships of early flowering genes and their effects on yield and yield components will be useful in chickpea breeding for desired phenology

    Inheritance and relationships of flowering time and seed size in kabuli chickpea

    Get PDF
    Flowering time and seed size are the important traits for adaptation in chickpea. Early phenology (time of flowering, podding and maturity) enhance chickpea adaptation to short season environments. Along with a trait of consumer preference, seed size has also been considered as an important factor for subsequent plant growth parameters including germination, seedling vigour and seedling mass. Small seeded kabuli genotype ICC 16644 was crossed with four genotypes (JGK 2, KAK 2, KRIPA and ICC 17109) to study inheritance of flowering time and seed size. The relationships of phenology with seed size, grain yield and its component traits were studied. The study included parents, F1, F2 and F3 of four crosses. The segregation data of F2 indicated flowering time in chickpea was governed by two genes with duplicate recessive epistasis and lateness was dominant to earliness. Two genes were controlling 100-seed weight where small seed size was dominant over large seed size. Early phenology had significant negative or no association (ICC 16644 × ICC 17109) with 100-seed weight. Yield per plant had significant positive association with number of seeds per plant, number of pods per plant, biological yield per plant, 100-seed weight, harvest index and plant height and hence could be considered as factors for seed yield improvement. Phenology had no correlation with yield per se (seed yield per plant) in any of the crosses studied. Thus, present study shows that in certain genetic background it might be possible to breed early flowering genotypes with large seed size in chickpea and selection of early flowering genotypes may not essentially have a yield penalty
    corecore