187 research outputs found

    Packet Relaying Control in Sensing-based Spectrum Sharing Systems

    Full text link
    Cognitive relaying has been introduced for opportunistic spectrum access systems by which a secondary node forwards primary packets whenever the primary link faces an outage condition. For spectrum sharing systems, cognitive relaying is parametrized by an interference power constraint level imposed on the transmit power of the secondary user. For sensing-based spectrum sharing, the probability of detection is also involved in packet relaying control. This paper considers the choice of these two parameters so as to maximize the secondary nodes' throughput under certain constraints. The analysis leads to a Markov decision process using dynamic programming approach. The problem is solved using value iteration. Finally, the structural properties of the resulting optimal control are highlighted

    Adaptive Modulation in Multi-user Cognitive Radio Networks over Fading Channels

    Full text link
    In this paper, the performance of adaptive modulation in multi-user cognitive radio networks over fading channels is analyzed. Multi-user diversity is considered for opportunistic user selection among multiple secondary users. The analysis is obtained for Nakagami-mm fading channels. Both adaptive continuous rate and adaptive discrete rate schemes are analysed in opportunistic spectrum access and spectrum sharing. Numerical results are obtained and depicted to quantify the effects of multi-user fading environments on adaptive modulation operating in cognitive radio networks

    Open string wavefunctions in flux compactifications

    Full text link
    We consider compactifications of type I supergravity on manifolds with SU(3) structure, in the presence of RR fluxes and magnetized D9-branes, and analyze the generalized Dirac and Laplace-Beltrami operators associated to the D9-brane worldvolume fields. These compactifications are T-dual to standard type IIB toroidal orientifolds with NSNS and RR 3-form fluxes and D3/D7 branes. By using techniques of representation theory and harmonic analysis, the spectrum of open string wavefunctions can be computed for Lie groups and their quotients, as we illustrate with explicit twisted tori examples. We find a correspondence between irreducible unitary representations of the Kaloper-Myers algebra and families of Kaluza-Klein excitations. We perform the computation of 2- and 3-point couplings for matter fields in the above flux compactifications, and compare our results with those of 4d effective supergravity.Comment: 89 pages, 4 figures. v3: more typos corrected, version published in JHE

    Aperture synthesis for gravitational-wave data analysis: Deterministic Sources

    Get PDF
    Gravitational wave detectors now under construction are sensitive to the phase of the incident gravitational waves. Correspondingly, the signals from the different detectors can be combined, in the analysis, to simulate a single detector of greater amplitude and directional sensitivity: in short, aperture synthesis. Here we consider the problem of aperture synthesis in the special case of a search for a source whose waveform is known in detail: \textit{e.g.,} compact binary inspiral. We derive the likelihood function for joint output of several detectors as a function of the parameters that describe the signal and find the optimal matched filter for the detection of the known signal. Our results allow for the presence of noise that is correlated between the several detectors. While their derivation is specialized to the case of Gaussian noise we show that the results obtained are, in fact, appropriate in a well-defined, information-theoretic sense even when the noise is non-Gaussian in character. The analysis described here stands in distinction to ``coincidence analyses'', wherein the data from each of several detectors is studied in isolation to produce a list of candidate events, which are then compared to search for coincidences that might indicate common origin in a gravitational wave signal. We compare these two analyses --- optimal filtering and coincidence --- in a series of numerical examples, showing that the optimal filtering analysis always yields a greater detection efficiency for given false alarm rate, even when the detector noise is strongly non-Gaussian.Comment: 39 pages, 4 figures, submitted to Phys. Rev.

    Inclusive electron scattering in a relativistic Green function approach

    Get PDF
    A relativistic Green function approach to the inclusive quasielastic (e,e') scattering is presented. The single particle Green function is expanded in terms of the eigenfunctions of the nonhermitian optical potential. This allows one to treat final state interactions consistently in the inclusive and in the exclusive reactions. Numerical results for the response functions and the cross sections for different target nuclei and in a wide range of kinematics are presented and discussed in comparison with experimental data.Comment: 12 pages, 7 figures, REVTeX

    Towards Minkowski Vacua in Type II String Compactifications

    Get PDF
    We study the vacuum structure of compactifications of type II string theories on orientifolds with SU(3)xSU(3) structure. We argue that generalised geometry enables us to treat these non-geometric compactifications using a supergravity analysis in a way very similar to geometric compactifications. We find supersymmetric Minkowski vacua with all the moduli stabilised at weak string coupling and all the tadpole conditions satisfied. Generically the value of the moduli fields in the vacuum is parametrically controlled and can be taken to arbitrarily large values.Comment: 33 pages; v2 minor corrections, references added, version to appear in JHE

    Type IIA Moduli Stabilization

    Full text link
    We demonstrate that flux compactifications of type IIA string theory can classically stabilize all geometric moduli. For a particular orientifold background, we explicitly construct an infinite family of supersymmetric vacua with all moduli stabilized at arbitrarily large volume, weak coupling, and small negative cosmological constant. We obtain these solutions from both ten-dimensional and four-dimensional perspectives. For more general backgrounds, we study the equations for supersymmetric vacua coming from the effective superpotential and show that all geometric moduli can be stabilized by fluxes. We comment on the resulting picture of statistics on the landscape of vacua.Comment: 48 pages, 2 figures, LaTeX. v2: references added. v3: minor comments & references adde

    Low Energy Supersymmetry from Non-Geometry

    Full text link
    We study a class of flux compactifications that have all the moduli stabilised, a high (GUT) string scale and a low (TeV) gravitino mass that is generated dynamically. These non-geometric compactifications correspond to type II string theories on SU(3)xSU(3) structure orientifolds. The resulting superpotentials admit, excluding non-perturbative effects, supersymmetric Minkowski vacua with any number of moduli stabilised. We argue that non-perturbative effects are present and introduce terms in the superpotential that are exponentially suppressed by the same moduli that appear perturbatively. These deform the supersymmetric Minkowski vacua to supersymmetric AdS vacua with an exponentially small gravitino mass. The resulting vacua allow for low scale supersymmetry breaking which can be realised by a number of mechanisms.Comment: 36pp; v2 references added, minor clarifications, JHEP versio

    Moduli Stabilization and Cosmology of Type IIB on SU(2)-Structure Orientifolds

    Get PDF
    We consider type IIB flux compactifications on six-dimensional SU(2)-structure manifolds with O5- and O7-planes. These six-dimensional spaces allow not only for F_3 and H_3 fluxes but also for F_1 and F_5 fluxes. We derive the four-dimensional N=1 scalar potential for such compactifications and present one explicit example of a fully stabilized AdS vacuum with large volume and small string coupling. We then discuss cosmological aspects of these compactifications and derive several no-go theorems that forbid dS vacua and slow-roll inflation under certain conditions. We also study concrete examples of cosets and twisted tori and find that our no-go theorems forbid dS vacua and slow-roll inflation in all but one of them. For the latter we find a dS critical point with \epsilon numerically zero. However, the point has two tachyons and eta-parameter \eta \approx -3.1.Comment: 35 pages + appendices, LaTeX2e; v2: numerical dS extremum added, typos corrected, references adde
    corecore