5 research outputs found

    Anesthetic management of right atrial mass removal and pulmonary artery thrombectomy in a patient with primary antiphospholipid antibody syndrome

    No full text
    Antiphospholipid antibody syndrome (APLAS) characterises a clinical condition of arterial and venous thrombosis associated with phospholipids directed antibodies. APLAS occurs in 2&#x0025; of the general population. However, one study demonstrated that 7.1&#x0025; of hospitalised patients were tested positive for at least one of the three anticardiolipin antibody idiotype. Antiphospholipid antibodies often inhibit phospholipids dependent coagulation <i>in vitro</i> and interfere with laboratory testing of hemostasis. Therefore, the management of anticoagulation during cardiopulmonary bypass can be quite challenging in these patients. Here, we present a case of right atrial mass removal and pulmonary thrombectomy in a patient of APLAS

    Liquid chromatographyâtandem mass spectrometry method for the estimation of adefovir in human plasma: Application to a pharmacokinetic study

    Get PDF
    An analytical method based on solid phase extraction was developed and validated for analysis of adefovir in human plasma. Adefovir-d4 was used as an internal standard and Synergi MAX RP80A (150 mmÃ4.6 mm, 4 µm) column provided the desired chromatographic separation of compounds followed by detection with mass spectrometry. The method used simple isocratic chromatographic condition and mass spectrometric detection in the positive ionization mode. The calibration curves were linear over the range of 0.50â42.47 ng/mL with the lower limit of quantitation validated at 0.50 ng/mL. Matrix effect was assessed by post-column infusion experiment to monitor phospholipids and post-extraction addition experiment was performed. The degree of matrix effect for adefovir was determined as 7.5% and ion-enhancement in five different lots of human plasma was 7.1% and had no impact on study samples analysis with 4.5 min run time. The intra- and inter-day precision values were within 7.7% and 7.8%, respectively, for adefovir at the lower limit of quantification level. Validated bioanalytical method was successfully applied to clinical sample analysis. Keywords: Adefovir, Liquid chromatographyâtandem mass spectrometry, Solid phase extraction, Pharmacokinetic stud

    Interaction of novel proteins, centrin4 and protein of centriole in Leishmania parasite and their effects on the parasite growth

    No full text
    International audienceCentrins are cytoskeletal proteins associated with the centrosomes or basal bodies in the eukaryotes. We previously reported the involvement of Centrin 1-3 proteins in cell division in the protozoan parasites Leishmania donovani and Trypanosoma brucei. Centrin4 and 5, unique to such parasites, had never been characterized in Leishmania parasite. In the current study, we addressed the function of centrin4 (LdCen4) in Leishmania. By dominant-negative study, the episomal expression of C-terminal truncated LdCen4 in the parasite reduced the parasite growth. LdCen4 double allele gene deletion by either homologous recombination or CRISPR-Cas9 was not successful in L. donovani. However, CRISPR-Cas9-based deletion of the homologous gene was possible in L. mexicana, which attenuated the parasite growth in vitro, but not ex vivo in the macrophages. LdCen4 also interacts with endogenous and overexpressed LdPOC protein, a homolog of centrin reacting human POC (protein of centriole) in a calcium sensitive manner. LdCen4 and LdPOC binding has also been confirmed through in silico analysis by protein structural docking and validated by co-immunoprecipitation. By immunofluorescence studies, we found that both the proteins share a common localization at the basal bodies. Thus, for the first time, this article describes novel centrin4 and its binding protein in the protozoan parasites
    corecore