9,192 research outputs found
Optical bright and dark states in side-coupled resonator structures
We analyze side-coupled standing-wave cavity structures consisting of Fabry-Perot and photonic crystal resonators coupled to two waveguides. We show that optical bright and dark states, analogous to those observed in coherent light-matter interactions, can exist in these systems. These structures may be useful for variable, switchable delay lines
Least-Squares Approximation by Elements from Matrix Orbits Achieved by Gradient Flows on Compact Lie Groups
Let denote the orbit of a complex or real matrix under a certain
equivalence relation such as unitary similarity, unitary equivalence, unitary
congruences etc. Efficient gradient-flow algorithms are constructed to
determine the best approximation of a given matrix by the sum of matrices
in in the sense of finding the Euclidean least-squares
distance
Connections of the results to different pure and applied areas are discussed
Chemotactic predator-prey dynamics
A discrete chemotactic predator-prey model is proposed in which the prey
secrets a diffusing chemical which is sensed by the predator and vice versa.
Two dynamical states corresponding to catching and escaping are identified and
it is shown that steady hunting is unstable. For the escape process, the
predator-prey distance is diffusive for short times but exhibits a transient
subdiffusive behavior which scales as a power law with time and
ultimately crosses over to diffusion again. This allows to classify the
motility and dynamics of various predatory bacteria and phagocytes. In
particular, there is a distinct region in the parameter space where they prove
to be infallible predators.Comment: 4 pages, 4 figure
Bulk and wetting phenomena in a colloidal mixture of hard spheres and platelets
Density functional theory is used to study binary colloidal fluids consisting
of hard spheres and thin platelets in their bulk and near a planar hard wall.
This system exhibits liquid-liquid coexistence of a phase that is rich in
spheres (poor in platelets) and a phase that is poor in spheres (rich in
platelets). For the mixture near a planar hard wall, we find that the phase
rich in spheres wets the wall completely upon approaching the liquid demixing
binodal from the sphere-poor phase, provided the concentration of the platelets
is smaller than a threshold value which marks a first-order wetting transition
at coexistence. No layering transitions are found in contrast to recent studies
on binary mixtures of spheres and non-adsorbing polymers or thin hard rods.Comment: 6 pages, 4 figure
Designing coupled-resonator optical waveguide delay lines
We address the trade-offs among delay, loss, and bandwidth in the design of coupled-resonator optical waveguide (CROW) delay lines. We begin by showing the convergence of the transfer matrix, tight-binding, and time domain formalisms in the theoretical analysis of CROWs. From the analytical formalisms we obtain simple, analytical expressions for the achievable delay, loss, bandwidth, and a figure of merit to be used to compare delay line performance. We compare CROW delay lines composed of ring resonators, toroid resonators, Fabry-Perot resonators, and photonic crystal defect cavities based on recent experimental results reported in the literature
Coupled Resonator Optical Waveguides: Toward the Slowing and Storage of Light
The development of a simple, solid-state-based technology to slow the propagation of light could prove an important step in the realization of the high-bit-rate communication systems of the future. The use of coupled resonator optical waveguides (CROWs) as practical elements to slow and store light pulses is one possibility
Transmission and group delay of microring coupled-resonator optical waveguides
We measured the transmission and group delay of microring coupled-resonator optical waveguides (CROWs). The CROWs consisted of 12 weakly coupled, microring resonators fabricated in optical polymers (PMMA on Cytop). The intrinsic quality factor of the resonators was 18,000 and the interresonator coupling was 1%, resulting in a delay of 110-140 ps and a slowing factor of 23-29 over a 17 GHz bandwidth
Polymer Microring Coupled-Resonator Optical Waveguides
We present measurements of the transmission and dispersion properties of coupled-resonator optical waveguides (CROWs) consisting of weakly coupled polymer microring resonators. The fabrication and the measurement methods of the CROWs are discussed as well. The experimental results agree well with the theoretical loss, waveguide dispersion, group delay, group velocity, and group-velocity dispersion (GVD). The intrinsic quality factors of the microrings were about 1.5 times 10^4 to 1.8 times 10^4, and group delays greater than 100 ps were measured with a GVD between -70 and 100 ps/(nm x resonator). With clear and simple spectral responses and without a need for the tuning of the resonators, the polymer microring CROWs demonstrate the practicability of using a large number of microresonators to control the propagation of optical waves
- …