112 research outputs found
Recommended from our members
Characterization of high purity germanium point contact detectors with low net impurity concentration
High Purity germanium point-contact detectors have low energy thresholds and excellent energy resolution over a wide energy range, and are thus widely used in nuclear and particle physics. In rare event searches, such as neutrinoless double beta decay, the point-contact geometry is of particular importance since it allows for pulse-shape discrimination, and therefore for a significant background reduction. In this paper we investigate the pulse-shape discrimination performance of ultra-high purity germanium point contact detectors. It is demonstrated that a minimal net impurity concentration is required to meet the pulse-shape performance requirements
Recommended from our members
ADC Nonlinearity Correction for the Majorana Demonstrator
Imperfections in analog-to-digital conversion (ADC) cannot be ignored when signal digitization requirements demand both wide dynamic range and high resolution, as is the case for the Majorana Demonstrator 76Ge neutrinoless double-beta decay search. Enabling the experiment's high-resolution spectral analysis and efficient pulse shape discrimination required careful measurement and correction of ADC nonlinearities. A simple measurement protocol was developed that did not require sophisticated equipment or lengthy data-taking campaigns. A slope-dependent hysteresis was observed and characterized. A correction applied to digitized waveforms prior to signal processing reduced the differential and integral nonlinearities by an order of magnitude, eliminating these as dominant contributions to the systematic energy uncertainty at the double-beta decay Q value
Recommended from our members
Cosmogenic neutron production at the Sudbury Neutrino Observatory
Neutrons produced in nuclear interactions initiated by cosmic-ray muons present an irreducible background to many rare-event searches, even in detectors located deep underground. Models for the production of these neutrons have been tested against previous experimental data, but the extrapolation to deeper sites is not well understood. Here we report results from an analysis of cosmogenically produced neutrons at the Sudbury Neutrino Observatory. A specific set of observables are presented, which can be used to benchmark the validity of geant4 physics models. In addition, the cosmogenic neutron yield, in units of 10-4 cm2/(g·μ), is measured to be 7.28±0.09(stat)-1.12+1.59(syst) in pure heavy water and 7.30±0.07(stat)-1.02+1.40(syst) in NaCl-loaded heavy water. These results provide unique insights into this potential background source for experiments at SNOLAB
Recommended from our members
Results of the MAJORANA DEMONSTRATOR's Search for Double-Beta Decay of 76Ge to Excited States of 76Se
The MAJORANA DEMONSTRATOR is searching for double-beta decay of 76Ge to excited states (E.S.) in 76Se using a modular array of high purity Germanium detectors. 76Ge can decay into three E.S.s of 76Se. The E.S. decays have a clear event signature consisting of a ββ-decay with the prompt emission of one or two γ-rays, resulting in with high probability in a multi-site event. The granularity of the DEMONSTRATOR detector array enables powerful discrimination of this event signature from backgrounds. Using 21.3 kg-y of isotopic exposure, the DEMONSTRATOR has set world leading limits for each E.S. decay, with 90% CL lower half-life limits in the range of (0.56 2.1) ⋅ 1024 y. In particular, for the 2v transition to the first 0+ E.S. of 76Se, a lower half-life limit of 0.68 ⋅ 1024 at 90% CL was achieved
Recommended from our members
Measurement of neutron production in atmospheric neutrino interactions at the Sudbury Neutrino Observatory
Neutron production in GeV-scale neutrino interactions is a poorly studied
process. We have measured the neutron multiplicities in atmospheric neutrino
interactions in the Sudbury Neutrino Observatory experiment and compared them
to the prediction of a Monte Carlo simulation using GENIE and a minimally
modified version of GEANT4. We analyzed 837 days of exposure corresponding to
Phase I, using pure heavy water, and Phase II, using a mixture of Cl in heavy
water. Neutrons produced in atmospheric neutrino interactions were identified
with an efficiency of and , for Phase I and II respectively.
The neutron production is measured as a function of the visible energy of the
neutrino interaction and, for charged current quasi-elastic interaction
candidates, also as a function of the neutrino energy. This study is also
performed classifying the complete sample into two pairs of event categories:
charged current quasi-elastic and non charged current quasi-elastic, and
and . Results show good overall agreement between data and
Monte Carlo for both phases, with some small tension with a statistical
significance below for some intermediate energies
Recommended from our members
Assay-based background projection for the Majorana Demonstrator using Monte Carlo uncertainty propagation
The background index (BI) is an important quantity to project and calculate the half-life sensitivity of neutrinoless double-β decay (0νββ) experiments. An analysis framework is presented to calculate the BI using the specific activities, masses, and simulated efficiencies of an experiments components as distributions. This Bayesian framework includes a unified approach to combine specific activities from assay. Monte Carlo uncertainty propagation is used to build a BI distribution from the specific activity, mass, and efficiency distributions. This method is applied to the Majorana Demonstrator, which deployed arrays of high-purity Ge detectors enriched in Ge76 to search for 0νββ. The original assay-based projection is requantified in the new framework, using the as-built geometry of the Demonstrator and additional assay information. While 47% higher than the original projection, the resulting BI of [8.95±0.36]×10-4cts/(keVkgyr) from the Th232 and U238 decay chains does not account for the higher-Than-expected BI observed by the Demonstrator. This method enables us to demonstrate the statistical incompatibility between the Demonstrator's observed background and the assay results
Recommended from our members
Search for charge non-conservation and Pauli exclusion principle violation with the Majorana Demonstrator
Charge conservation and the Pauli exclusion principle result from fundamental symmetries in the standard model of particle physics, and are typically taken as axiomatic. High-precision tests for small violations of these symmetries could point to new physics. Here we consider three models for violation of these processes, which would produce detectable ionization in the high-purity germanium detectors of the Majorana Demonstrator experiment. Using a 37.5 kg yr exposure, we report a lower limit on the electron mean lifetime, improving the previous best limit for the e→νeνe¯νe decay channel by more than an order of magnitude. We also present searches for two types of violation of the Pauli exclusion principle, setting limits on the probability of an electron to be found in a symmetric quantum state
- …
