95 research outputs found

    Loss of the mitochondrial kinase PINK1 does not alter platelet function

    Get PDF
    Abstract PTEN-induced putative kinase (PINK) 1 is regarded as a master regulator of cellular mitophagy such that loss of function mutations contribute to early onset Parkinson’s disease, through aberrant mitochondrial control and function. Mitochondrial function is key to platelet procoagulant activity, controlling the haemostatic response to vessel injury, but can also predispose blood vessels to thrombotic complications. Here, we sought to determine the role of PINK1 in platelet mitochondrial health and function using PINK1 knockout (KO) mice. The data largely show an absence of such a role. Haematological analysis of blood counts from KO mice was comparable to wild type. Quantification of mitochondrial mass by citrate synthase activity assay or expression of mitochondrial markers were comparable, suggesting normal mitophagy in KO platelets. Analysis of mitochondrial permeability transition pore opening, changes in mitochondrial membrane potential and calcium signalling to platelet activation were unaffected by loss of PINK1, whereas subtle enhancements of activation-induced reactive oxygen species were detected. Platelet aggregation, integrin activation, α- and dense granule secretion and phosphatidylserine exposure were unaltered in KO platelets while mouse tail bleeding responses were similar to wild type. Together these results demonstrate that PINK1 does not regulate basal platelet mitophagy and is dispensable for platelet function

    PREDICTING THE SUMMER TEMPERATURE OF SMALL STREAMS IN SOUTHWESTERN WISCONSIN 1

    Full text link
    One of the biggest challenges in managing cold water streams in the Midwest is understanding how stream temperature is controlled by the complex interactions among meteorologic processes, channel geometry, and ground water inflow. Inflow of cold ground water, shade provided by riparian vegetation, and channel width are the most important factors controlling summer stream temperatures. A simple screening model was used to quantitatively evaluate the importance of these factors and guide management decisions. The model uses an analytical solution to the heat transport equation to predict steady-state temperature throughout a stream reach. The model matches field data from four streams in southwestern Wisconsin quite well (typically within 1°C) and helps explain the observed warming and cooling trends along each stream reach. The distribution of ground water inflow throughout a stream reach has an important influence on stream temperature, and springs are especially effective at providing thermal refuge for fish. Although simple, this model provides insight into the importance of ground water and the impact different management strategies, such as planting trees to increase shade, may have on summer stream temperature.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74032/1/j.1752-1688.2005.tb03714.x.pd

    Optimizing the growth of forage and grain legumes on low pH soils through the application of superior Rhizobium leguminosarum biovar viciae strains

    No full text
    Climate variability and current farming practices have led to declining soil fertility and pH, with a heavy reliance on fertilizers and herbicides. The addition of forage and grain legumes to farming systems not only improves soil health but also increases farm profitability through nitrogen (N) fertilizer cost offsets. However, the formation of effective symbioses between legumes and rhizobia can be unreliable and is considered at risk when combined with dry sowing practices such as those that have been designed to obviate effects of climate change. This research was initiated to improve the robustness of the legume/rhizobia symbiosis in low pH, infertile and dry soils. Production from two cultivars of field pea (Pisum sativum) and two species of vetch (Vicia spp.), and symbiotic outcomes when inoculated with a range of experimental rhizobial strains (Rhizobium leguminosarum biovar viciae), was assessed in broad acre field trials which simulated farmer practice. New rhizobia strains increased nodulation, N fixation, produced more biomass and higher seed yield than comparator commercial strains. Strain WSM4643 also demonstrated superior survival when desiccated compared to current commercial strains in the laboratory and on seed when delivered as inoculant in peat carriers. WSM4643 is a suitable prospect for a commercial inoculant in Australia and other agricultural areas of the world where growing peas and vetch on soils generally considered problematic for this legume/rhizobia symbiosis. A particular advantage of WSM4643 may be that it potentiates sowing inoculated legumes into dry soil, which is a contemporary response by farmers to climate variation
    • 

    corecore