9,638 research outputs found

    Parallelized Inference for Gravitational-Wave Astronomy

    Full text link
    Bayesian inference is the workhorse of gravitational-wave astronomy, for example, determining the mass and spins of merging black holes, revealing the neutron star equation of state, and unveiling the population properties of compact binaries. The science enabled by these inferences comes with a computational cost that can limit the questions we are able to answer. This cost is expected to grow. As detectors improve, the detection rate will go up, allowing less time to analyze each event. Improvement in low-frequency sensitivity will yield longer signals, increasing the number of computations per event. The growing number of entries in the transient catalog will drive up the cost of population studies. While Bayesian inference calculations are not entirely parallelizable, key components are embarrassingly parallel: calculating the gravitational waveform and evaluating the likelihood function. Graphical processor units (GPUs) are adept at such parallel calculations. We report on progress porting gravitational-wave inference calculations to GPUs. Using a single code - which takes advantage of GPU architecture if it is available - we compare computation times using modern GPUs (NVIDIA P100) and CPUs (Intel Gold 6140). We demonstrate speed-ups of 50×\sim 50 \times for compact binary coalescence gravitational waveform generation and likelihood evaluation and more than 100×100\times for population inference within the lifetime of current detectors. Further improvement is likely with continued development. Our python-based code is publicly available and can be used without familiarity with the parallel computing platform, CUDA.Comment: 5 pages, 4 figures, submitted to PRD, code can be found at https://github.com/ColmTalbot/gwpopulation https://github.com/ColmTalbot/GPUCBC https://github.com/ADACS-Australia/ADACS-SS18A-RSmith Add demonstration of improvement in BNS spi

    Miniature spectrally selective dosimeter

    Get PDF
    A miniature spectrally selective dosimeter capable of measuring selected bandwidths of radiation exposure on small mobile areas is described. This is achieved by the combination of photovoltaic detectors, electrochemical integrators (E-cells) and filters in a small compact case which can be easily attached in close proximity to and substantially parallel to the surface being measured. In one embodiment two photovoltaic detectors, two E-cells, and three filters are packaged in a small case with attaching means consisting of a safety pin. In another embodiment, two detectors, one E-cell, three filters are packaged in a small case with attaching means consisting of a clip to clip over a side piece of an eye glass frame

    Panel discussion

    Get PDF
    "The Importance of Being Predictable" by John B. Taylor -- "Monetary Policy Under Uncertainty" by Ben S. Bernanke -- "The Importance of Being Predictable" by William PooleMonetary policy
    corecore