19 research outputs found

    Role of Forkhead Transcription Factors in Diabetes-Induced Oxidative Stress

    Get PDF
    Diabetes is a chronic metabolic disorder, characterized by hyperglycemia resulting from insulin deficiency and/or insulin resistance. Recent evidence suggests that high levels of reactive oxygen species (ROS) and subsequent oxidative stress are key contributors in the development of diabetic complications. The FOXO family of forkhead transcription factors including FOXO1, FOXO3, FOXO4, and FOXO6 play important roles in the regulation of many cellular and biological processes and are critical regulators of cellular oxidative stress response pathways. FOXO1 transcription factors can affect a number of different tissues including liver, retina, bone, and cell types ranging from hepatocytes to microvascular endothelial cells and pericytes to osteoblasts. They are induced by oxidative stress and contribute to ROS-induced cell damage and apoptosis. In this paper, we discuss the role of FOXO transcription factors in mediating oxidative stress-induced cellular response

    FOXO1 Promotes Wound Healing Through the Up-Regulation of TGF-β1 and Prevention of Oxidative Stress

    Get PDF
    Keratinocyte mobilization is a critical aspect of wound re-epithelialization, but the mechanisms that control its precise regulation remain poorly understood. We set out to test the hypothesis that forkhead box O1 (FOXO1) has a negative effect on healing because of its capacity to inhibit proliferation and promote apoptosis. Contrary to expectations, FOXO1 is required for keratinocyte transition to a wound-healing phenotype that involves increased migration and up-regulation of transforming growth factor β1 (TGF-β1) and its downstream targets, integrin-α3 and -β6 and MMP-3 and -9. Furthermore, we show that FOXO1 functions in keratinocytes to reduce oxidative stress, which is necessary to maintain cell migration and prevent cell death in a TGF-β1–independent manner. Thus, our studies identify a novel function for FOXO1 in coordinating the response of keratinocytes to wounding through up-regulation of TGF-β1 and other factors needed for keratinocyte migration and protection against oxidative stress, which together promote migration and decrease apoptosis

    Effect of Bacteria on the Wound Healing Behavior of Oral Epithelial Cells

    Get PDF
    Wounded tissue offers opportunity to microflora to adhere, colonize, invade and infect surrounding healthy tissue. The bacteria of the oral cavity have the potential to alter the wound healing process by interacting with keratinocytes. The aim of this study was to investigate mechanisms through which oral bacteria may influence re-epithelialization by interacting with gingival keratinocytes. By an in vitro scratch assay we demonstrate that primary gingival keratinocytes have impaired closure when exposed to two well characterized oral bacteria, P. gingivalis, and to a lesser extent, F. nucleatum. P. gingivalis reduced wound closure by ~40%, which was partially dependent on proteolytic activity, and bacteria was still present within infected cells 9 days later despite exposure to bacteria for only 24 h. Both oral bacteria caused keratinocyte apoptosis at the wound site with cell death being greatest at the wound edge. P. gingivalis and F. nucleatum adversely affected cell proliferation and the effect also had a spatial component being most striking at the edge. The impact of the bacteria was long lasting even when exposure was brief. Cell migration was compromised in bacteria challenged keratinocytes with P. gingivalis having more severe effect (pF. nucleatum. Quantitative real time PCR of bacteria challenged cells showed that P. gingivalis and to a lesser extent F. nucleatum significantly downregulated cell cycle genes cyclin1, CDK1, and CDK4 (pP. gingivalis (p\u3c0.05)

    FOXO1 Expression in Keratinocytes Promotes Connective Tissue Healing

    Get PDF
    Wound healing is complex and highly orchestrated. It is well appreciated that leukocytes, particularly macrophages, are essential for inducing the formation of new connective tissue, which requires the generation of signals that stimulate mesenchymal stem cells (MSC), myofibroblasts and fibroblasts. A key role for keratinocytes in this complex process has yet to be established. To this end, we investigated possible involvement of keratinocytes in connective tissue healing. By lineage-specific deletion of the forkhead box-O 1 (FOXO1) transcription factor, we demonstrate for the first time that keratinocytes regulate proliferation of fibroblasts and MSCs, formation of myofibroblasts and production of collagen matrix in wound healing. This stimulation is mediated by a FOXO1 induced TGFβ1/CTGF axis. The results provide direct evidence that epithelial cells play a key role in stimulating connective tissue healing through a FOXO1-dependent mechanism. Thus, FOXO1 and keratinocytes may be an important therapeutic target where healing is deficient or compromised by a fibrotic outcome

    FXR Acetylation is Normally Dynamically Regulated by p300 and SIRT1 but Constitutively Elevated in Metabolic Disease States

    Get PDF
    The nuclear bile acid receptor FXR is critical for regulation of lipid and glucose metabolism. Here, we report that FXR is a target of SIRT1, a deacetylase that mediates nutritional and hormonal modulation of hepatic metabolism. Lysine 217 of FXR is the major acetylation site targeted by p300 and SIRT1. Acetylation of FXR increases its stability but inhibits heterodimerization with RXRalpha, DNA binding, and transactivation activity. Downregulation of hepatic SIRT1 increased FXR acetylation with deleterious metabolic outcomes. Surprisingly, in mouse models of metabolic disease, FXR interaction with SIRT1 and p300 was dramatically altered, FXR acetylation levels were elevated, and overexpression of SIRT1 or resveratrol treatment reduced acetylated FXR levels. Our data demonstrate that FXR acetylation is normally dynamically regulated by p300 and SIRT1 but is constitutively elevated in metabolic disease states. Small molecules that inhibit FXR acetylation by targeting SIRT1 or p300 may be promising therapeutic agents for metabolic disorders

    Nutritional Regulation of Cholesterol 7alpha Hydroxylase (Cyp7a1) Expression

    No full text
    127 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2009.The combined studies on understanding the molecular basis for the nutritional regulation of CYP7A1 expression may provide new insights into the changes in cholesterol, lipid, and bile acid metabolism in diabetes and obesity.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD

    Coordinated Recruitment of Histone Methyltransferase G9a and Other Chromatin-Modifying Enzymes in SHP-Mediated Regulation of Hepatic Bile Acid Metabolism

    No full text
    SHP has been implicated as a pleiotropic regulator of diverse biological functions by its ability to inhibit numerous nuclear receptors. Recently, we reported that SHP inhibits transcription of CYP7A1, a key gene in bile acid biosynthesis, by recruiting histone deacetylases (HDACs) and a Swi/Snf-Brm complex. To further delineate the mechanism of this inhibition, we have examined whether methylation of histones is also involved and whether a functional interplay between chromatin-modifying enzymes occurs. The histone methyltransferase G9a, but not SUV39, was colocalized with SHP in the nucleus and directly interacted with SHP in vitro. G9a, which was coimmunoprecipitated with hepatic SHP, methylated Lys-9 of histone 3 (H3K9) in vitro. Expression of G9a enhanced inhibition of CYP7A1 transcription by SHP, while a catalytically inactive G9a dominant negative (DN) mutant reversed the SHP inhibition. G9a was recruited to and H3K9 was methylated at the CYP7A1 promoter in a SHP-dependent manner in bile acid-treated HepG2 cells. Expression of the G9a-DN mutant inhibited H3K9 methylation, blocked the recruitment of the Brm complex, and partially reversed CYP7A1 inhibition by bile acids. Inhibition of HDAC activity with trichostatin A blocked deacetylation and methylation of H3K9 at the promoter, and, conversely, inhibition of H3K9 methylation by G9a-DN partially blocked deacetylation. Hepatic expression of G9a-DN in mice fed cholic acid disrupted bile acid homeostasis, resulting in increased bile acid pools and partial de-repression of Cyp7a1 and Cyp8b1. Our studies establish a critical role for G9a methyltransferase, histone deacetylases, and the Swi/Snf-Brm complex in the SHP-mediated inhibition of hepatic bile acid synthesis via coordinated chromatin modification at target genes

    Effect of Bacteria on the Wound Healing Behavior of Oral Epithelial Cells

    No full text
    Wounded tissue offers opportunity to microflora to adhere, colonize, invade and infect surrounding healthy tissue. The bacteria of the oral cavity have the potential to alter the wound healing process by interacting with keratinocytes. The aim of this study was to investigate mechanisms through which oral bacteria may influence re-epithelialization by interacting with gingival keratinocytes. By an in vitro scratch assay we demonstrate that primary gingival keratinocytes have impaired closure when exposed to two well characterized oral bacteria, P. gingivalis, and to a lesser extent, F. nucleatum. P. gingivalis reduced wound closure by ~40%, which was partially dependent on proteolytic activity, and bacteria was still present within infected cells 9 days later despite exposure to bacteria for only 24 h. Both oral bacteria caused keratinocyte apoptosis at the wound site with cell death being greatest at the wound edge. P. gingivalis and F. nucleatum adversely affected cell proliferation and the effect also had a spatial component being most striking at the edge. The impact of the bacteria was long lasting even when exposure was brief. Cell migration was compromised in bacteria challenged keratinocytes with P. gingivalis having more severe effect (pF. nucleatum. Quantitative real time PCR of bacteria challenged cells showed that P. gingivalis and to a lesser extent F. nucleatum significantly downregulated cell cycle genes cyclin1, CDK1, and CDK4 (pP. gingivalis (p\u3c0.05)
    corecore