635 research outputs found

    Instability of a supersonic shock free elliptic jet

    Get PDF
    This paper presents a comparison of the measured and the computed spatial stability properties of an aspect ratio 2 supersonic shock free elliptic jet. The shock free nature of the elliptic jet provides an ideal test of validity of modeling the large scale coherent structures in the initial mixing region of noncircular supersonic jets with linear hydrodynamic stability theory. Both aerodynamic and acoustic data were measured. The data are used to compute the mean velocity profiles and to provide a description of the spatial composition of pressure waves in the elliptic jet. A hybrid numerical scheme is applied to solve the Rayleigh problem governing the inviscid linear spatial stability of the jet. The measured mean velocity profiles are used to provide a qualitative model for the cross sectional geometry and the smooth velocity profiles used in the stability analysis. Computational results are presented for several modes of instability at two jet cross sections. The acoustic measurements show that a varicose instability is the jet's perferred mode of motion. The stability analysis predicts that the Strouhal number varies linearly as a function of axial distance in the jet's initial mixing region, which is in good qualitative agreement with previous measurements

    Ghosts and Tachyons in the Fifth Dimension

    Full text link
    We present several solutions for the five dimensional gravity models in the presence of bulk ghosts and tachyons to argue that these "troublesome" fields can be a useful model-building tool. The ghost-like signature of the kinetic term for a bulk scalar creates a minimum in the scale factor, removing the necessity for a negative tension brane in models with the compactified fifth dimension. It is shown that the model with the positive tension branes and a ghost field in the bulk leads to the radion stabilization. The bulk scalar with the variable sign kinetic term can be used to model both positive and negative tension branes of a finite width in the compact dimension. Finally, we present several ghost and tachyon field configurations in the bulk that lead to the localization of gravity in four dimensions, including one solution with the Gaussian profile for the metric, g_{\mu\nu}(y)=\eta_{\mu\nu}\exp{-\alpha y^2}, which leads to a stronger localization of gravity than the Randall-Sundrum model.Comment: New references adde

    Spacetime structure of the global vortex

    Get PDF
    We analyse the spacetime structure of the global vortex and its maximal analytic extension in an arbitrary number of spacetime dimensions. We find that the vortex compactifies space on the scale of the Hubble expansion of its worldvolume, in a manner reminiscent of that of the domain wall. We calculate the effective volume of this compactification and remark on its relevance to hierarchy resolution with extra dimensions. We also consider strongly gravitating vortices and derive bounds on the existence of a global vortex solution.Comment: 19 pages revtex, 2 figures, minor changes, references adde

    Modulus stabilization of generalized Randall Sundrum model with bulk scalar field

    Full text link
    We study the stabilization of inter-brane spacing modulus of generalized warped brane models with a nonzero brane cosmological constant. Employing Goldberger-Wise stabilization prescription of brane world models with a bulk scalar field, we show that the stabilized value of the modulus generally depends on the value of the brane cosmological constant. Our result further reveals that the stabilized modulus value corresponding to a vanishingly small cosmological constant can only resolve the gauge hierarchy problem simultaneously. This in turn vindicates the original Randall-Sundrum model where the 3-brane cosmological constant was chosen to be zero.Comment: 12 Pages, 1 figure, Revtex, Version to appear in Euro. Phys. Let

    Fermions in gravity and gauge backgrounds on a brane world

    Full text link
    We solve the fermionic zero modes in gravity and gauge backgrounds on a brane involving a warped geometry, and study the localization of spin 1/2 fermionic field on the brane world. The result is that there exist massless spin 1/2 fermions which can be localized on the bulk with the exponentially decreasing warp factor if including U(1) gauge background. Two special cases of gauge backgrounds on the extra dimensional manifold are discussed.Comment: 11 pages, no figures, final versio

    Aeroacoustic Data for a High Reynolds Number Axisymmetric Subsonic Jet

    Get PDF
    The near field fluctuating pressure and aerodynamic mean flow characteristics of a cold subsonic jet issuing from a contoured convergent nozzle are presented. The data are presented for nozzle exit Mach numbers of 0.30, 0.60, and 0.85 at a constant jet stagnation temperature of 104 F. The fluctuating pressure measurements were acquired via linear and semi-circular microphone arrays and the presented results include plots of narrowband spectra, contour maps, streamwise/azimuthal spatial correlations for zero time delay, and cross-spectra of the azimuthal correlations. A pitot probe was used to characterize the mean flow velocity by assuming the subsonic flow to be pressure-balanced with the ambient field into which it exhausts. Presented are mean flow profiles and the momentum thickness of the free shear layer as a function of streamwise position

    Completely localized gravity with higher curvature terms

    Full text link
    In the intersecting braneworld models, higher curvature corrections to the Einstein action are necessary to provide a non-trivial geometry (brane tension) at the brane junctions. By introducing such terms in a Gauss-Bonnet form, we give an effective description of localized gravity on the singular delta-function branes. There exists a non-vanishing brane tension at the four-dimensional brane intersection of two 4-branes. Importantly, we give explicit expressions of the graviton propagator and show that the Randall-Sundrum single-brane model with a Gauss-Bonnet term in the bulk correctly gives a massless graviton on the brane as for the RS model. We explore some crucial features of completely localized gravity in the solitonic braneworld solutions obtained with a choice (\xi=1) of solutions. The no-go theorem known for Einstein's theory may not apply to the \xi=1 solution. As complementary discussions, we provide an effective description of the power-law corrections to Newtonian gravity on the branes or at the common intersection thereof.Comment: 19 pages, LaTeX, Revised/Published Versio

    Material-independent crack arrest statistics: Application to indentation experiments

    Full text link
    An extensive experimental study of indentation and crack arrest statistics is presented for four different brittle materials (alumina, silicon carbide, silicon nitride, glass). Evidence is given that the crack length statistics can be described by a universal (i.e. material independent) distribution. The latter directly derives from results obtained when modeling crack propagation as a depinning phenomenon. Crack arrest (or effective toughness) statistics appears to be fully characterized by two parameters, namely, an asymptotic crack length (or macroscopic toughness) value and a power law size dependent width. The experimental knowledge of the crack arrest statistics at one given scale thus gives access to its knowledge at all scales

    New Form of the T-Duality Due to the Stability of a Compact Dimension

    Full text link
    We study behaviors of a compact dimension and the TT-duality, in the presence of the wrapped closed bosonic strings. When the closed strings interact and form another system of strings, the radius of compactification increases. This modifies the TT-duality, which we call it as TT-duality-like. Some effects of the TT-duality-like will be studied.Comment: 12 pages, Latex, no figur
    • …
    corecore