1,054 research outputs found

    THoR: a tool for domain discovery and curation of multiple alignments

    Get PDF
    We describe a tool, THoR, that automatically creates and curates multiple sequence alignments representing protein domains. This exploits both PSI-BLAST and HMMER algorithms and provides an accurate and comprehensive alignment for any domain family. The entire process is designed for use via a web-browser, with simple links and cross-references to relevant information, to assist the assessment of biological significance. THoR has been benchmarked for accuracy using the SMART and pufferfish genome databases

    Genome cartography through domain annotation

    Get PDF
    The evolutionary history of eukaryotic proteins involves rapid sequence divergence, addition and deletion of domains, and fusion and fission of genes. Although the protein repertoires of distantly related species differ greatly, their domain repertoires do not. To account for the great diversity of domain contexts and an unexpected paucity of ortholog conservation, we must categorize the coding regions of completely sequenced genomes into domain families, as well as protein families

    Participatory planning for eco-trekking on a potential World Heritage site: The communities of the Kokoda Track

    Get PDF
    Participatory Rural Appraisal (PRA) is an approach to data collection in participatory research. In this approach, the researcher is required to acknowledge and appreciate that research participants have the necessary knowledge and skills to be partners in the research process. PRA techniques were used to collect data on the Kokoda Track, Papua New Guinea, illuminating the communities' perceptions of eco-trekking and how they could better benefit from it. This case study is an example of the implementation of community-based eco-tourism development and of understanding the multiplicity of forces that support or undermine it. © The Australian National University

    The helix-hairpin-helix DNA-binding motif: A structural basis for non-sequence-specific recognition of DNA

    Get PDF
    One, two or four copies of the 'helix-hairpin-helix' (HhH) DNA-binding motif are predicted to occur in 14 homologous families of proteins. The predicted DNA-binding function of this motif is shown to be consistent with the crystallographic structure of rat polymerase ß, complexed with DNA template-primer and with biochemical data. Five crystal structures of predicted HhH motifs are currently known: two from rat pol ß and one each in endonuclease III, AlkA and the 5' nuclease domain of Taq pol I. These motifs are more structurally similar to each other than to any other structure in current databases, including helix-turn-helix motifs. The clustering of the five HhH structures separately from other bi-helical structures in searches indicates that all members of the 14 families of proteins described herein possess similar HhH structures. By analogy with the rat pol ß structure, it is suggested that each of these HhH motifs bind DNA in a non-sequence-specific manner, via the formation of hydrogen bonds between protein backbone nitrogens and DNA phosphate groups. This type of interaction contrasts with the sequence-specific interactions of other motifs, including helix-turn-helix structures. Additional evidence is provided that alphaherpesvirus virion host shutoff proteins are members of the polymerase I 5'-nuclease and FEN1-like endonuclease gene family, and that a novel HhH-containing DNA-binding domain occurs in the kinesin-like molecule nod, and in other proteins such as cnjB, emb-5 and SPT6

    The PDZ domain of the SpoIVB serine peptidase facilitates multiple functions

    Get PDF
    During spore formation in Bacillus subtilis, the SpoIVB protein is a critical component of the sigma (K) regulatory checkpoint. SpoIVB has been shown to be a serine peptidase that is synthesized in the spore chamber and which self-cleaves, releasing active forms. These forms can signal proteolytic processing of the transcription factor sigma (K) in the outer mother cell chamber of the sporulating cell. This forms the basis of the sigma (K) checkpoint and ensures accurate sigma (K)-controlled gene expression. SpoIVB has also been shown to activate a second distinct process, termed the second function, which is essential for the formation of heat-resistant spores. In addition to the serine peptidase domain, SpoIVB contains a PDZ domain. We have altered a number of conserved residues in the PDZ domain by site-directed mutagenesis and assayed the sporulation phenotype and signaling properties of mutant SpoIVB proteins. Our work has revealed that the SpoIVB PDZ domain could be used for up to four distinct processes, (i) targeting of itself for trans proteolysis, (11) binding to the protease inhibitor BofC, (iii) signaling of pro-sigma (K) processing, and (iv) signaling of the second function of SpoIVB

    Mathematical Model of Easter Island Society Collapse

    Full text link
    In this paper we consider a mathematical model for the evolution and collapse of the Easter Island society, starting from the fifth century until the last period of the society collapse (fifteen century). Based on historical reports, the available primary sources consisted almost exclusively on the trees. We describe the inhabitants and the resources as an isolated system and both considered as dynamic variables. A mathematical analysis about why the structure of the Easter Island community collapse is performed. In particular, we analyze the critical values of the fundamental parameters driving the interaction humans-environment and consequently leading to the collapse. The technological parameter, quantifying the exploitation of the resources, is calculated and applied to the case of other extinguished civilization (Cop\'an Maya) confirming, with a sufficiently precise estimation, the consistency of the adopted model.Comment: 9 pages, 1 figure, final version published on EuroPhysics Letter

    Population Genetics of Perennial Ryegrass (\u3cem\u3eLolium Perenne\u3c/em\u3e L.): Differentiation of Pasture and Turf Cultivars

    Get PDF
    Cultivar differentiation using molecular markers to assess genetic variation may be of value in obtaining or protecting plant breeders rights. A knowledge of genetic variation and how it is structured within perennial ryegrass (Lolium perenne L.) populations will also help us understand the consequences to fitness and adaptation when implementing molecular breeding strategies. In a study of the population genetic structure of a number of perennial ryegrass varieties we examined the cultivar differentiation potential of marker technology
    corecore