128 research outputs found

    Dynamic Modeling of Cell Migration and Spreading Behaviors on Fibronectin Coated Planar Substrates and Micropatterned Geometries

    Get PDF
    An integrative cell migration model incorporating focal adhesion (FA) dynamics, cytoskeleton and nucleus remodeling, actin motor activity, and lamellipodia protrusion is developed for predicting cell spreading and migration behaviors. This work is motivated by two experimental works: (1) cell migration on 2-D substrates under various fibronectin concentrations and (2) cell spreading on 2-D micropatterned geometries. These works suggest (1) cell migration speed takes a maximum at a particular ligand density (~1140 molecules/µm2) and (2) that strong traction forces at the corners of the patterns may exist due to combined effects exerted by actin stress fibers (SFs). The integrative model of this paper successfully reproduced these experimental results and indicates the mechanism of cell migration and spreading. In this paper, the mechanical structure of the cell is modeled as having two elastic membranes: an outer cell membrane and an inner nuclear membrane. The two elastic membranes are connected by SFs, which are extended from focal adhesions on the cortical surface to the nuclear membrane. In addition, the model also includes ventral SFs bridging two focal adhesions on the cell surface. The cell deforms and gains traction as transmembrane integrins distributed over the outer cell membrane bond to ligands on the ECM surface, activate SFs, and form focal adhesions. The relationship between the cell migration speed and fibronectin concentration agrees with existing experimental data for Chinese hamster ovary (CHO) cell migrations on fibronectin coated surfaces. In addition, the integrated model is validated by showing persistent high stress concentrations at sharp geometrically patterned edges. This model will be used as a predictive model to assist in design and data processing of upcoming microfluidic cell migration assays

    Computational Analysis of the Spatiotemporal Coordination of Polarized PI3K and Rac1 Activities in Micro-Patterned Live Cells

    Get PDF
    Polarized molecular activities play important roles in guiding the cell toward persistent and directional migration. In this study, the polarized distributions of the activities of phosphatidylinositol 3-kinase (PI3K) and the Rac1 small GTPase were monitored using chimeric fluorescent proteins (FPs) in cells constrained on micro-patterned strips, with one end connecting to a neighboring cell (junction end) and the other end free of cell-cell contact (free end). The recorded spatiotemporal dynamics of the fluorescent intensity from different cells was scaled into a uniform coordinate system and applied to compute the molecular activity landscapes in space and time. The results revealed different polarization patterns of PI3K and Rac1 activity induced by the growth factor stimulation. The maximal intensity of different FPs, and the edge position and velocity at the free end were further quantified to analyze their correlation and decipher the underlying signaling sequence. The results suggest that the initiation of the edge extension occurred before the activation of PI3K, which led to a stable extension of the free end followed by the Rac1 activation. Therefore, the results support a concerted coordination of sequential signaling events and edge dynamics, underscoring the important roles played by PI3K activity at the free end in regulating the stable lamellipodia extension and cell migration. Meanwhile, the quantification methods and accompanying software developed can provide a convenient and powerful computational analysis platform for the study of spatiotemporal molecular distribution and hierarchy in live cells based on fluorescence images

    CD133-positive hepatocellular carcinoma in an area endemic for hepatitis B virus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD133 was detected in several types of cancers including hepatocellular carcinoma (HCC), which raised the possibility of stem cell origin in a subset of cancers. However, reappearance of embryonic markers in de-differentiated malignant cells was commonly observed. It remained to be elucidated whether CD133-positive HCCs were indeed of stem cell origin or they were just a group of poorly differentiated cells acquiring an embryonic marker. The aim of this study was to investigate the significance of CD133 expression in HCC in an area endemic for hepatitis B virus (HBV) infection to gain insights on this issue.</p> <p>Methods</p> <p>154 HCC patients receiving total removal of HCCs were included. 104 of them (67.5%) were positive for HBV infection. The cancerous and adjacent non-cancerous liver tissues were subjected for Western blot and immunohistochemistry analysis for CD133 expression. The data were correlated with clinical parameters, patient survivals, and p53 expression.</p> <p>Results</p> <p>Of 154 patients, 24 (15.6%) had CD133 expression in HCC. Univariate and multivariate logistic regression analysis revealed that CD133 expression was negatively correlated with the presence of hepatitis B surface antigen (HBsAg). The unadjusted and adjusted odds ratios were 0.337 (95%CI 0.126 - 0.890) and 0.084 (95%CI 0.010 - 0.707), respectively. On the other hand, p53 expression was positively associated with the presence of HBsAg in univariate analysis. The unadjusted odds ratio was 4.203 (95%CI 1.110 - 18.673). Survival analysis indicated that both CD133 and p53 expression in HCC predicted poor disease-free survival (P = 0.009 and 0.001, respectively), whereas only CD133 expression predicted poor overall survival (P = 0.001). Cox proportional hazard model showed that p53 and CD133 expression were two independent predictors for disease-free survival. The hazard ratios were 1.697 (95% CI 1.318 - 2.185) and 2.559 (95% CI 1.519 - 4.313), respectively (P < 0.001 for both).</p> <p>Conclusion</p> <p>In area where HBV infection accounts for the major attributive risk of HCC, CD133 expression in HCC was negatively associated with the presence of HBsAg, implicating a non-viral origin of CD133-positive HCC. Additionally, CD133 expression predicted poor disease-free survival independently of p53 expression, arguing for two distinguishable hepatocarcinogenesis pathways.</p

    Coaction of Spheroid-Derived Stem-Like Cells and Endothelial Progenitor Cells Promotes Development of Colon Cancer

    Get PDF
    Although some studies described the characteristics of colon cancer stem cells (CSCs) and the role of endothelial progenitor cells (EPCs) in neovascularization, it is still controversial whether an interaction exists or not between CSCs and EPCs. In the present study, HCT116 and HT29 sphere models, which are known to be the cells enriching CSCs, were established to investigate the roles of this interaction in development and metastasis of colon cancer. Compared with their parental counterparts, spheroid cells demonstrated higher capacity of invasion, higher tumorigenic and metastatic potential. Then the in vitro and in vivo relationship between CSCs and EPCs were studied by using capillary tube formation assay and xenograft models. Our results showed that spheroid cells could promote the proliferation, migration and tube formation of EPCs through secretion of vascular endothelial growth factor (VEGF). Meanwhile, the EPCs could increase tumorigenic capacity of spheroid cells through angiogenesis. Furthermore, higher microvessel density was detected in the area enriching cancer stem cells in human colon cancer tissue. Our findings indicate that spheroid cells possess the characteristics of cancer stem cells, and the coaction of CSCs and EPCs may play an important role in the development of colon cancer

    Breast cancer stem cells: implications for therapy of breast cancer

    Get PDF
    The concept of cancer stem cells responsible for tumour origin, maintenance, and resistance to treatment has gained prominence in the field of breast cancer research. The therapeutic targeting of these cells has the potential to eliminate residual disease and may become an important component of a multimodality treatment. Recent improvements in immunotherapy targeting of tumour-associated antigens have advanced the prospect of targeting breast cancer stem cells, an approach that might lead to more meaningful clinical remissions. Here, we review the role of stem cells in the healthy breast, the role of breast cancer stem cells in disease, and the potential to target these cells

    Black hole spin: theory and observation

    Full text link
    In the standard paradigm, astrophysical black holes can be described solely by their mass and angular momentum - commonly referred to as `spin' - resulting from the process of their birth and subsequent growth via accretion. Whilst the mass has a standard Newtonian interpretation, the spin does not, with the effect of non-zero spin leaving an indelible imprint on the space-time closest to the black hole. As a consequence of relativistic frame-dragging, particle orbits are affected both in terms of stability and precession, which impacts on the emission characteristics of accreting black holes both stellar mass in black hole binaries (BHBs) and supermassive in active galactic nuclei (AGN). Over the last 30 years, techniques have been developed that take into account these changes to estimate the spin which can then be used to understand the birth and growth of black holes and potentially the powering of powerful jets. In this chapter we provide a broad overview of both the theoretical effects of spin, the means by which it can be estimated and the results of ongoing campaigns.Comment: 55 pages, 5 figures. Published in: "Astrophysics of Black Holes - From fundamental aspects to latest developments", Ed. Cosimo Bambi, Springer: Astrophysics and Space Science Library. Additional corrections mad
    corecore