40 research outputs found

    The Muskingum-Cunge-Todini streamflow routing model in floodplain rivers

    Get PDF
    Esse artigo é o segundo artigo de uma série que analisa o modelo Muskingum-Cunge-Todini (MCT). No primeiro artigo (Pontes e Collischonn, 2012) é feita uma comparação entre os modelos simplificados de propagação de vazão MCT, MCL (Muskingum-Cunge linear) e MCNL (Muskingum-Cunge não linear).Além disso, também são realizados testes em um sistema real. No atual artigo é apresentada uma modificação do modelo MCT para considerar o fluxo em rios com planície de inundação, onde a velocidade na área alagada é significativamente menor do que a velocidade da água na calha principal, o que afeta fortemente a celeridade da onda de cheia. Também foram realizados testes de conservação de volume variando declividade, rugosidade, discretização temporal e espacial. Além disso, foi realizada uma análise acerca do valor de ∆x ideal, para evitar problemas de volume ou instabilidade numérica, e acerca dos critérios de aplicabilidade descritos por Ponce (1989). O modelo MCT considerando planície de inundação foi comparado com o modelo hidrodinâmico HEC-RAS já consagrado na literatura, e um modelo Muskingum-Cunge não linear (Tucci, 2005). Os resultados mostram que o modelo MCT modificado para considerar a planície de inundação conserva o volume nos casos de variação de declividade e rugosidade. Com relação aos valores de ∆x, o modelo apre- senta certa sensibilidade. Valores muito altos de ∆x podem originar erros de vazão de pico e tempo de ocorrência da vazão de pico, além de instabilidade nos hidrogramas. Os mesmos problemas podem ser identificados no modelo HEC-RAS quando adotado ∆x altos. Também foi sugerida uma formulação para o cálculo do ∆x ideal. Esse novo valor diminui a ocorrência de erros de volume e instabilidade nos hidrogramas.This paper is the second of two papers in a series which analyzes and improves the Muskingum-Cunge-Todini (MCT) model. In the first paper the simplified stream flow model and HEC-RAS are compared. The volume error was analyzed. The current paper presents a modification in the MCT model to account for the flow in floodplain rivers, whose velocity in flooded areas is significantly lower than the velocity in the main channel. This paper also shows the volume conservation tests and analysis of DX to avoid volume errors and numerical stability problems. The results show that the improved MCT model is conservative regarding volume

    Climate change and extreme streamflows in Paraná River basin

    Get PDF
    A bacia do rio Paraná é um grande sistema fluvial da América Latina, com área, até confluência com o rio Iguaçu, de 800.000 km² ao longo de seis estados brasileiros (Minas Gerais, São Paulo, Goiás, Mato Grosso do Sul, Paraná e Distrito Federal). Diferentes usos da água nesta região, como a geração de energia hidrelétrica (incluindo Itaipu), agricultura e abastecimento de água humano dependem do comportamento hidrológico e características climáticas da bacia. Portanto, para melhor gestão dos recursos hídricos, é importante o conhecimento dos processos hidrológicos, como o regime de vazões e suas possíveis respostas às mudanças climáticas. Este estudo apresenta o uso do modelo hidrológico distribuído MGB-IPH para avaliar o impacto das mudanças climáticas sobre as vazões máximas e mínimas, em diferentes pontos de controle na bacia do rio Paraná. Projeções de variáveis climáticas, de quatro membros do modelo climático regional ETA-CPTEC, sob o cenário de emissões A1B, foram utilizadas para executar o modelo hidrológico. As vazões anuais simuladas (máxi- mas e mínimas) foram analisadas ao longo de quatro intervalos de tempo de 30 anos (1961-1990, 2011-2040, 2041-2070 e 2071-2100). Os resultados mostram que os impactos sobre as vazões são altamente dependentes do membro do modelo utilizado para obter as projeções climáticas. Na maioria dos casos as vazões máximas projetadas estão dentro dos limites de incerteza em relação às series atuais. No geral os resultados sugerem que a variabilidade natural do clima pode ser tão importante quanto a influência de mudanças climáticas.The Parana River basin is a large river system in Latin America, with a drainage area of 800,000 km² until the confluence with the Iguaçu River, flowing through six Brazilian states (Minas Gerais, São Paulo, Goiás, Mato Grosso do Sul, Paraná and the Federal District). Multiple water uses in this region are included hydroelectric power generation (including Itaipu), agriculture and human water supply, which depend on the hydrology and climate characteristics of the basin. To allow better water resources management, it is important to know hydrological processes, flow rates, and possible responses to climate changes. This study presents the use of the distributed hydrological model MGB-IPH to assess the impact of climate change on maximum and minimum flows at different control points in the Paraná River basin. Projections of climate variables, based on four members of the regional climate model ETA-CPTEC, under the A1B emissions scenario, were used to run the hydrological model. The simulated annual flow rates (maximum and minimum) were analyzed over four time intervals of 30 years (1961-1990, 2011-2040, 2041-2070 and 2071-2100). Results show that impacts on flow rates depend to a large extent on the member of the model used for climate projections. In most cases the projected peak flows are within the range of uncertainty regarding current series. Overall the results suggest that natural climate variability can be as important as the influence of climate change

    Discretização de redes fluviais para modelos hidrológico-hidrodinâmicos de grande escala

    Get PDF
    The discretization of river networks is a critical step for computing flow routing in hydrological models. However, when it comes to more complex hydrologic-hydrodynamic models, adaptations in the spatial representation of model calculation units are further required to allow cost-effective simulations, especially for large scale applications. The objective of this paper is to assess the impacts of river discretization on simulated discharge, water levels and numerical stability of a catchment-based hydrologic-hydrodynamic model, using a fixed river length (Δx) segmentation method. The case study was the Purus river basin, a sub-basin of the Amazon, which covers an area that accounts for rapid response upstream reaches to downstream floodplain rivers. Results indicate that the maximum and minimum discharges are less affected by the adopted Δx (reach-length), whereas water levels are more influenced by this selection. It is showed that for the explicit local inertial one-dimensional routing, Δx and the α parameter of CFL (Courant-Friedrichs-Lewy) condition must be carefully chosen to avoid mass balance errors. Additionally, a simple Froude number-based flow limiter to avoid numerical issues is proposed and tested.A discretização da rede fluvial é uma etapa crítica para o cálculo da propagação de vazões em modelos hidrológicos. No entanto, quando se trata de modelagem hidrológico-hidrodinâmica mais complexa, adaptações na representação espacial das unidades de cálculo do modelo são necessárias para permitir simulações eficientes, especialmente para aplicações em grande escala. O objetivo deste artigo foi avaliar os impactos da discretização dos rios nas vazões simuladas, níveis de água e estabilidade numérica de um modelo hidrológicohidrodinâmico baseado em divisões por sub-bacias, usando um método de segmentação de comprimento do rio (Δx) fixo. O estudo de caso foi a bacia do rio Purus, um afluente do rio Amazonas, que abrange uma área que conta desde regiões de respostas rápidas a montante até rios de várzea a jusante. Os resultados indicam que as descargas máximas e mínimas são menos afetadas pelo Δx adotado, enquanto os níveis de água são mais influenciados por essa seleção. Mostra-se que, para a propagação unidimensional inercial local usando um modelo explícito, o Δx e o alfa da condição CFL (Courant-Friedrichs-Lewy) devem ser cuidadosamente escolhidos para evitar erros de balanço de massa. Além disso, um limitador de fluxo baseado em número Froude simples é proposto e testado

    Hydrologic and hydraulic large-scale modeling with inertial flow routing

    Get PDF
    Modelos hidrológicos são capazes de representar processos do ciclo hidrológico através de equações matemáticas. Dentre esses processos, a propagação de vazão nos rios é de grande importância, especialmente em bacias de grande escala. Em geral, o módulo de propagação de vazão implementado nos modelos hidrológicos é simplificado, sendo adotada uma versão da metodologia de onda cinemática, na maior parte dos casos. Apesar disso, modelos que utilizam essas metodologias produzem resultados aceitáveis na maioria das aplicações. Entretanto, bacias com rios de baixa declividade, com trechos sujeitos a remanso, ou com extensas planícies de inundação, podem não ser bem representados por metodologias de propagação simplificadas. Uma alternativa é o uso de modelos hidrodinâmicos para propagação de vazão. Entretanto, esses modelos necessitam de mais dados de entrada e possuem equacionamentos complexos. Uma opção de complexi- dade intermediária que pode ser adotada é utilizar uma aproximação das equações de Saint-Venant que despreza apenas o termo de inércia advectiva na equação dinâmica. Esta aproximação vem sendo chamada de modelo inercial, ou método inercial. Esse artigo apresenta uma proposta de uma nova versão do modelo hidrológico MGB-IPH, em que o módulo de propagação de vazões na rede de drenagem, originalmente baseado no método Muskingum-Cunge, é substituído pelo método inercial. Além disso, o artigo também apresenta uma forma de representar redes de drenagem com ilhas ou laços, e extensas áreas inundáveis. A bacia do rio Araguaia foi escolhida para testar a metodologia, por possuir rios com alta e baixa declividade e regiões de planície de inundação, como a Ilha do Bananal. Os resultados do modelo MGB-IPH com propagação Inercial foram comparados com a propagação por Muskingum-Cunge através de medidas de desempenho entre as vazões calculadas e observadase mapas de inundação. Os resultados mostraram que utilizando o método inercial, o modelo MGB-IPH representa melhor os efeitos de atenuação da onda de cheia do que utilizando o métodoMuskingum-Cunge. Os mapas de inundação calculados pelo modelo MGB-IPH com o método de propagação inercial foram comparados com imagens do sensor MODIS mostrando que é possível representar, em escala regional, grandes regiões inundáveis como a Ilha do Bananal, mesmo sem dados detalhados de seções transversais e de topografia.Hydrological models are capable of representing basin scale processes through mathematic equations. Among them, flow routing is important, especially for large-scale basins. Flow routing methods used in hydrologic models are commonly simplified, and show satisfactory results in most cases. However, low slope rivers, rivers with backwater effects, or rivers with large flood plains cannot be well represented by simplified flow routing methods. An alternative for them is the full Saint-Venant equations model (hydrodynamic model). Nevertheless, this model demands more input data and its equations are more complex. An easier option than the full Saint-Venant equations model is the Inertial model, which ignores the inertial term from the Momentum equation. This paper presents an improvement of the MGB-IPH hydrologic model, where the simplified flow routing method is replaced by the Inertial model. Furthermore, this paper shows a methodology to represent island sand/or bifurcations in rivers. The Araguaia river basin was selected as a case study due to its particular physical characteristics. Results of the MGB-IPH with Inertial flow routing model were compared to conventional MGB-IPH Muskingum-Cunge method results, and to observed flow data. General outcomes show that observed flow data are better represented by the new improved MGB-IPH model. Furthermore, the simulated flood plain areas were visually well represented in comparison with MODIS imagery
    corecore