2 research outputs found

    Heterogeneous Infectivity and Pathogenesis of SARS-CoV-2 Variants Beta, Delta and Omicron in Transgenic K18-hACE2 and Wildtype Mice

    Get PDF
    SARS-CoV-2; Viral load; Wildtype miceSARS-CoV-2; Carga viral; Ratones de tipo salvajeSARS-CoV-2; CĂ rrega viral; Ratolins de tipus salvatgeThe emerging SARS-CoV-2 variants of concern (VOCs) may display enhanced transmissibility, more severity and/or immune evasion; however, the pathogenesis of these new VOCs in experimental SARS-CoV-2 models or the potential infection of other animal species is not completely understood. Here we infected K18-hACE2 transgenic mice with B.1, B.1.351/Beta, B.1.617.2/Delta and BA.1.1/Omicron isolates and demonstrated heterogeneous infectivity and pathogenesis. B.1.351/Beta variant was the most pathogenic, while BA.1.1/Omicron led to lower viral RNA in the absence of major visible clinical signs. In parallel, we infected wildtype (WT) mice and confirmed that, contrary to B.1 and B.1.617.2/Delta, B.1.351/Beta and BA.1.1/Omicron can infect them. Infection in WT mice coursed without major clinical signs and viral RNA was transient and undetectable in the lungs by day 7 post-infection. In silico modeling supported these findings by predicting B.1.351/Beta receptor binding domain (RBD) mutations result in an increased affinity for both human and murine ACE2 receptors, while BA.1/Omicron RBD mutations only show increased affinity for murine ACE2.The research of CBIG consortium (constituted by IRTA-CReSA, BSC & IrsiCaixa) is supported by Grifols. We thank Foundation Dormeur for financial support for the acquisition of the QuantStudio-5 real time PCR system. CÁ-N has a grant by Secretaria d’Universitats i Recerca de la Generalitat de Catalunya and Fons Social Europeu. EG-V is a research fellow from PERIS (SLT017/20/000090). This work was partially funded by grant PID2020-117145RB-I00 from the Spanish Ministry of Science and Innovation (NI-U) the Departament de Salut of the Generalitat de Catalunya (grant SLD016 to JB and Grant SLD015 to JC), the Spanish Health Institute Carlos III (Grant PI17/01518. PI20/00093 to JB and PI18/01332 to JC), FundaciĂł La MaratĂł de TV3 (Project202126-30-21), CERCA Programme/Generalitat de Catalunya 2017 SGR 252, and the crowdfunding initiatives #joemcorono (https://www.yomecorono.com), BonPreu/Esclat and Correos. Funded in part by FundaciĂł GlĂČria Soler (JB). The funders had no role in study design, data collection and analysis, the decision to publish, or the preparation of the manuscript

    A Novel Monoclonal Antibody Targeting a Large Surface of the Receptor Binding Motif Shows Pan-neutralizing SARS-CoV-2 Activity Including BQ.1.1 Variant

    Get PDF
    In the present study we report the functional and structural characterization of 17T2, a new highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody (mAb) isolated from a convalescent COVID-19 individual infected during the first wave of the COVID-19 pandemic. 17T2 is a class 1 VH1-58/Îș3-20 antibody, derived from a receptor binding domain (RBD)-specific IgA memory B cell and developed as a human recombinant IgG1. Functional characterization revealed that 17T2 mAb has a high and exceptionally broad neutralizing activity against all SARS-CoV-2 spike variants tested, including BQ.1.1. Moreover, 17T2 mAb has in vivo prophylactic activity against Omicron BA.1.1 infection in K18-hACE2 transgenic mice. 3D reconstruction from cryogenic-electron microscopy (cryo-EM) showed that 17T2 binds the Omicron BA.1 spike protein with the RBD domains in up position and recognizes an epitope overlapping with the receptor binding motif, as it is the case for other structurally similar neutralizing mAbs, including S2E12. Yet, unlike S2E12, 17T2 retains its high neutralizing activity against all Omicron sublineages tested, probably due to a larger contact area with the RBD, which could confer a higher resilience to spike mutations. These results highlight the impact of small structural antibody changes on neutralizing performance and identify 17T2 mAb as a potential candidate for future therapeutic and prophylactic interventions.We acknowledge access to the cryo-EM CNB-CSIC facility in the context of the CRIOMECORR project (ESFRI-2019-01-CSIC-16) and we thank the staff of the Protein Technology Unity (CRG) for the help in protein production. This study was supported by the COVID-19 call grant from Generalitat de Catalunya, Department of Health (to GM), grant Miguel Servet research program (to GM), and partially funded by the crowdfunding initiative #joemcorono and the FundaciĂł GlĂČria Soler (to JB). A.P-G. was supported by a predoctoral grant from Generalitat de Catalunya and Fons Social Europeu (2022 FI_B 00698).N
    corecore