1,311 research outputs found

    Quantal Two-Centre Coulomb Problem treated by means of the Phase-Integral Method II. Quantization Conditions in the Symmetric Case Expressed in Terms of Complete Elliptic Integrals. Numerical Illustration

    Get PDF
    The contour integrals, occurring in the arbitrary-order phase-integral quantization conditions given in a previous paper, are in the first- and third-order approximations expressed in terms of complete elliptic integrals in the case that the charges of the Coulomb centres are equal. The evaluation of the integrals is facilitated by the knowledge of quasiclassical dynamics. The resulting quantization conditions involving complete elliptic integrals are solved numerically to obtain the energy eigenvalues and the separation constants of the 1sσ1s\sigma and 2pσ2p\sigma states of the hydrogen molecule ion for various values of the internuclear distance. The accuracy of the formulas obtained is illustrated by comparison with available numerically exact results.Comment: 19 pages, RevTeX 4, 4 EPS figures, submitted to J. Math. Phy

    Evidence for Antiferromagnetic Order in La2x_{2-x}Cex_{x}CuO4_{4} from Angular Magnetoresistance Measurements

    Full text link
    We investigated the in-plane angular magnetoresistivity (AMR) of T% T^{^{\prime}}-phase La2x_{2-x}Cex_{x}CuO4_{4} (LCCO) thin films (x=0.060.15% x=0.06-0.15) fabricated by a pulsed laser deposition technique. The in-plane AMR with Hab\mathbf{H}\parallel ab shows a twofold symmetry instead of the fourfold behavior found in other electron-doped cuprates such as Pr2x% _{2-x}Cex_{x}CuO4_{4} and Nd2x_{2-x}Cex_{x}CuO4_{4}. The twofold AMR disappears above a certain temperature, TDT_{D}. The TD(x)T_{D}(x) is well above Tc(x)T_{c}(x) for x=0.06x=0.06 (110\sim 110 K), and decreases with increasing doping, until it is no longer observed above Tc(x)T_{c}(x) at x=0.15x=0.15. This twofold AMR below TD(x)T_{D}(x) is suggested to originate from an antiferromagnetic or spin density wave order.Comment: to be published in Phys. Rev. B, Vol. 80 (2009

    Second Josephson excitations beyond mean field as a toy model for thermal pressure: exact quantum dynamics and the quantum phase model

    Full text link
    A simple four-mode Bose-Hubbard model with intrinsic time scale separation can be considered as a paradigm for mesoscopic quantum systems in thermal contact. In our previous work we showed that in addition to coherent particle exchange, a novel slow collective excitation can be identified by a series of Holstein-Primakoff transformations. This resonant energy exchange mode is not predicted by linear Bogoliubov theory, and its frequency is sensitive to interactions among Bogoliubov quasi-particles; it may be referred to as a second Josephson oscillation, in analogy to the second sound mode of liquid Helium II. In this paper we will explore this system beyond the Gross-Pitaevskii mean field regime. We directly compare the classical mean field dynamics to the exact full quantum many-particle dynamics and show good agreement over a large range of the system parameters. The second Josephson frequency becomes imaginary for stronger interactions, however, indicating dynamical instability of the symmetric state. By means of a generalized quantum phase model for the full four-mode system, we then show that, in this regime, high-energy Bogoliubov quasiparticles tend to accumulate in one pair of sites, while the actual particles preferentially occupy the opposite pair. We interpret this as a simple model for thermal pressure

    Predicting Cell Death and Mutation Frequency for a Wide Spectrum of LET by Assuming DNA Break Clustering Inside Repair Domains

    Get PDF
    Cosmic radiation, which is composed of high charged and energy (HZE) particles, is responsible for cell death and mutation, which may be involved in cancer induction. Mutations are consequences of mis-repaired DNA breaks especially double-strand breaks (DSBs) that induce inter- and intra-chromosomal rearrangements (translocations, deletions, inversion). In this study, a computer simulation model is used to investigate the clustering of DSBs in repair domains, previously evidenced by our group in human breast cells [1]. This model is calibrated with experimental data measuring persistent 53BP1 radiation-induced foci (RIF) and is used to explain the high relative biological effectiveness (RBE) of HZE for both cell death and DNA mutation frequencies. We first validate our DSB cluster model using a new track structure model deployed on a simple geometrical configuration for repair domains in the nucleus; then we extend the scope from cell death to mutation induction. This work suggests that mechanism based on DSB repair process can explain several biological effects induced by HZE particles on different type of living cell

    Low-energy dipole strength and the critical case of 48Ca

    Full text link
    Recent theoretical work has not led to a consensus regarding the nature of the low-energy E1 strength in the 40,44,48Ca isotopes, for which high-resolution (gamma,gamma') data exist. Here we revisit this problem using the first-order quasi-particle random-phase approximation (QRPA) and different interactions. First we examine all even Ca isotopes with N=14-40. All isotopes are predicted to undergo dipole transitions at low energy, of large and comparable isoscalar strength but of varying E1 strength. Provided a moderate and uniform energetic shift is introduced to the results, QRPA with the Gogny D1S interaction is able to account for the (gamma,gamma') data, because, up to N=28, it yields a rather pure isoscalar oscillation. A neutron-skin oscillation is anticipated for N larger or equal to 30. This contradicts existing predictions that 44,48Ca develop a neutron-skin mode. Which theoretical result is correct cannot be resolved conclusively using the available data. We propose that alpha-scattering, possibly followed by an electroexcitation experiment, could resolve the situation and thereby help to improve the different models aspiring to describe reliably the low-energy dipole strength of nuclei.Comment: 7 pages, incl. 3 figures; PLB submitte

    Anharmonic properties of double giant dipole resonance

    Get PDF
    A systematic microscopic study of the anharmonic properties of the double giant dipole resonance (DGDR) has been carried out, for the first time, for nuclei with mass number AA spanning the whole mass table. It is concluded that the corrections of the energy centroid of the Jπ=0+J^{\pi} = 0^+ and 2+2^+ components of the DGDR from its harmonic limit are negative, have a value of the order of few hundred keV and follow an A1A^{-1} dependence.Comment: 4 pages, 2 figure

    Tuning the mobility of a driven Bose-Einstein condensate via diabatic Floquet bands

    Full text link
    We study the response of ultracold atoms to a weak force in the presence of a temporally strongly modulated optical lattice potential. It is experimentally demonstrated that the strong ac-driving allows for a tailoring of the mobility of a dilute atomic Bose-Einstein condensate with the atoms moving ballistically either along or against the direction of the applied force. Our results are in agreement with a theoretical analysis of the Floquet spectrum of a model system, thus revealing the existence of diabatic Floquet bands in the atom's band spectra and highlighting their role in the non-equilibrium transport of the atoms

    Investigation of LiFeAs by means of "Break-junction" Technique

    Full text link
    In our tunneling investigation using Andreev superconductor - normal metal - superconductor contacts on LiFeAs single crystals we observed two reproducible independent subharmonic gap structures at dynamic conductance characteristics. From these results, we can derive the energy of the large superconducting gap ΔL=(2.5÷3.4)\Delta_L=(2.5 \div 3.4) meV and the small gap ΔL=(0.9÷1)\Delta_L=(0.9 \div 1) meV at T=4.2T = 4.2 K for the TClocal(10.5÷14)T_C^{local} \approx (10.5 \div 14) K (the contact area critical temperature which deviation causes the variation of ΔL\Delta_L). The BCS-ratio is found to be 2ΔL/kBTC=(4.6÷5.6)2\Delta_L/k_BT_C = (4.6 \div 5.6), whereas 2ΔS/kBTC3.522\Delta_S/k_BT_C \ll 3.52 results from induced superconductivity in the bands with the small gap.Comment: 7 pages, 5 figures. Published in Pis'ma v ZhETF 95, 604-610 (2012
    corecore