2,003 research outputs found
ac-driven atomic quantum motor
We invent an ac-driven quantum motor consisting of two different, interacting
ultracold atoms placed into a ring-shaped optical lattice and submerged in a
pulsating magnetic field. While the first atom carries a current, the second
one serves as a quantum starter. For fixed zero-momentum initial conditions the
asymptotic carrier velocity converges to a unique non-zero value. We also
demonstrate that this quantum motor performs work against a constant load.Comment: 4 pages, 4 figure
Mapping the Arnold web with a GPU-supercomputer
The Arnold diffusion constitutes a dynamical phenomenon which may occur in
the phase space of a non-integrable Hamiltonian system whenever the number of
the system degrees of freedom is . The diffusion is mediated by a
web-like structure of resonance channels, which penetrates the phase space and
allows the system to explore the whole energy shell. The Arnold diffusion is a
slow process; consequently the mapping of the web presents a very
time-consuming task. We demonstrate that the exploration of the Arnold web by
use of a graphic processing unit (GPU)-supercomputer can result in distinct
speedups of two orders of magnitude as compared to standard CPU-based
simulations.Comment: 7 pages, 4 figures, a video supplementary provided at
http://www.physik.uni-augsburg.de/~seiberar/arnold/Energy15_HD_frontNback.av
Double giant resonances in deformed nuclei
We report on the first microscopic study of the properties of two-phonon
giant resonances in deformed nuclei. The cross sections of the excitation of
the giant dipole and the double giant dipole resonances in relativistic heavy
ion collisions are calculated. We predict that the double giant dipole
resonance has a one-bump structure with a centroid 0.8 MeV higher than twice
energy for the single giant dipole resonance in the reaction under
consideration. The width of the double resonance equals to 1.33 of that for the
single resonance.Comment: 5 pages, 2 postscript figure
Mathematical model of composite fibre-glass aramide-wired cord rheological properties
This paper describes the rheological properties of composite fibre-glass aramide-wired cords which, in its turn, are applied in large-sized structures for space systems. Based on experimental data a new mathematical model describing creeping and relaxation of composite cords is proposed. This model defines the operation time of the composite cords to be 15 years
Calculation method for cable-beam shell structures
This paper presents a calculation method suitable for cable-beam shell structures. It is based on both nonlinear finite element and force density methods. The main idea is to define the solution sequence for stress - strain state problem of above mentioned structures by nonlinear finite element method. Every successive solution involves the previous one as an initial estimate in convergent domain. To find an initial estimate for the first solution a force density method is used. The proposed method is tested on a new large space umbrella reflector
- β¦