9,125 research outputs found
Is U(1) a Good Family Symmetry?
We analyze U(1) as a horizontal symmetry and its possibilities to explain
the known elementary-fermion masses. We find that only two candidates, in the
context of SU(3)SU(2)U(1)U(1)
nonsupersymmetric, are able to fit the experimental result mm.Comment: 10 pages, Accepted for publication in Z. Phys.
Hydrostatic Equilibrium of a Perfect Fluid Sphere with Exterior Higher-Dimensional Schwarzschild Spacetime
We discuss the question of how the number of dimensions of space and time can
influence the equilibrium configurations of stars. We find that dimensionality
does increase the effect of mass but not the contribution of the pressure,
which is the same in any dimension. In the presence of a (positive)
cosmological constant the condition of hydrostatic equilibrium imposes a lower
limit on mass and matter density. We show how this limit depends on the number
of dimensions and suggest that is more effective in 4D than in
higher dimensions. We obtain a general limit for the degree of compactification
(gravitational potential on the boundary) of perfect fluid stars in
-dimensions. We argue that the effects of gravity are stronger in 4D than in
any other number of dimensions. The generality of the results is also
discussed
Local dynamics for fibered holomorphic transformations
Fibered holomorphic dynamics are skew-product transformations over an
irrational rotation, whose fibers are holomorphic functions. In this paper we
study such a dynamics on a neighborhood of an invariant curve. We obtain some
results analogous to the results in the non fibered case
Recommended from our members
Sceloporus heterolepis
Number of Pages: 3Integrative BiologyGeological Science
Self-similar cosmologies in 5D: spatially flat anisotropic models
In the context of theories of Kaluza-Klein type, with a large extra
dimension, we study self-similar cosmological models in 5D that are
homogeneous, anisotropic and spatially flat. The "ladder" to go between the
physics in 5D and 4D is provided by Campbell-Maagard's embedding theorems. We
show that the 5-dimensional field equations determine the form of
the similarity variable. There are three different possibilities: homothetic,
conformal and "wave-like" solutions in 5D. We derive the most general
homothetic and conformal solutions to the 5D field equations. They require the
extra dimension to be spacelike, and are given in terms of one arbitrary
function of the similarity variable and three parameters. The Riemann tensor in
5D is not zero, except in the isotropic limit, which corresponds to the case
where the parameters are equal to each other. The solutions can be used as 5D
embeddings for a great variety of 4D homogeneous cosmological models, with and
without matter, including the Kasner universe. Since the extra dimension is
spacelike, the 5D solutions are invariant under the exchange of spatial
coordinates. Therefore they also embed a family of spatially {\it
inhomogeneous} models in 4D. We show that these models can be interpreted as
vacuum solutions in braneworld theory. Our work (I) generalizes the 5D
embeddings used for the FLRW models; (II) shows that anisotropic cosmologies
are, in general, curved in 5D, in contrast with FLRW models which can always be
embedded in a 5D Riemann-flat (Minkowski) manifold; (III) reveals that
anisotropic cosmologies can be curved and devoid of matter, both in 5D and 4D,
even when the metric in 5D explicitly depends on the extra coordinate, which is
quite different from the isotropic case.Comment: Typos corrected. Minor editorial changes and additions in the
Introduction and Summary section
High coercivity induced by mechanical milling in cobalt ferrite powders
In this work we report a study of the magnetic behavior of ferrimagnetic
oxide CoFe2O4 treated by mechanical milling with different grinding balls. The
cobalt ferrite nanoparticles were prepared using a simple hydrothermal method
and annealed at 500oC. The non-milled sample presented coercivity of about 1.9
kOe, saturation magnetization of 69.5 emu/g, and a remanence ratio of 0.42.
After milling, two samples attained coercivity of 4.2 and 4.1 kOe, and
saturation magnetization of 67.0 and 71.4 emu/g respectively. The remanence
ratio MR/MS for these samples increase to 0.49 and 0.51, respectively. To
investigate the influence of the microstructure on the magnetic behavior of
these samples, we used X-ray powder diffraction (XPD), transmission electron
microscopy (TEM), and vibrating sample magnetometry (VSM). The XPD analysis by
the Williamson-Hall plot was used to estimate the average crystallite size and
strain induced by mechanical milling in the samples
Lepton masses and mixing without Yukawa hierarchies
We investigate the neutrino masses and mixing patten in a version of the
model with one extra exotic charged
lepton per family as introduced by Ozer. It is shown that an extended scalar
sector, together with a discrete symmetry, is able to reproduce a
consistent lepton mass spectrum without a hierarchy in the Yukawa coupling
constants, the former as a carefull balance between one universal see-saw and
two radiative mechanisms.Comment: 7 pages, 2 figures, accepted for publication in Phys. Rev. D
Cosmological Implications of a Non-Separable 5D Solution of the Vacuum Einstein Field Equations
An exact class of solutions of the 5D vacuum Einstein field equations (EFEs)
is obtained. The metric coefficients are found to be non-separable functions of
time and the extra coordinate and the induced metric on = constant
hypersurfaces has the form of a Friedmann-Robertson-Walker cosmology. The 5D
manifold and 3D and 4D submanifolds are in general curved, which distinguishes
this solution from previous ones in the literature. The singularity structure
of the manifold is explored: some models in the class do not exhibit a big
bang, while other exhibit a big bang and a big crunch. For the models with an
initial singularity, the equation of state of the induced matter evolves from
radiation like at early epochs to Milne-like at late times and the big bang
manifests itself as a singular hypersurface in 5D. The projection of comoving
5D null geodesics onto the 4D submanifold is shown to be compatible with
standard 4D comoving trajectories, while the expansion of 5D null congruences
is shown to be in line with conventional notions of the Hubble expansion.Comment: 8 pages, in press in J. Math. Phy
- …