2 research outputs found

    Development of Inapparent Dengue Associated With Increased Antibody Levels to Aedes aegypti Salivary Proteins: A Longitudinal Dengue Cohort in Cambodia.

    No full text
    BackgroundWe established the first prospective cohort to understand how infection with dengue virus is influenced by vector-specific determinants such as humoral immunity to Aedes aegypti salivary proteins.MethodsChildren aged 2-9 years were enrolled in the PAGODAS (Pediatric Assessment Group of Dengue and Aedes Saliva) cohort with informed consent by their guardians. Children were followed semi-annually for antibodies to dengue and to proteins in Ae. aegypti salivary gland homogenate using enzyme-linked immunosorbent assays and dengue-specific neutralization titers. Children presented with fever at any time for dengue testing.ResultsFrom 13 July to 30 August 2018, we enrolled 771 children. At baseline, 22% (173/770) had evidence of neutralizing antibodies to 1 or more dengue serotypes. By April 2020, 51 children had symptomatic dengue while 148 dengue-naive children had inapparent dengue defined by neutralization assays. In a multivariate model, individuals with higher antibodies to Ae. aegypti salivary proteins were 1.5 times more likely to have dengue infection (hazard ratio [HR], 1.47 [95% confidence interval {CI}, 1.05-2.06]; P = .02), particularly individuals with inapparent dengue (HR, 1.64 [95% CI, 1.12-2.41]; P = .01).ConclusionsHigh levels of seropositivity to Ae. aegypti salivary proteins are associated with future development of dengue infection, primarily inapparent, in dengue-naive Cambodian children.Clinical trials registrationNCT03534245

    Discovering disease-causing pathogens in resource-scarce Southeast Asia using a global metagenomic pathogen monitoring system.

    No full text
    SignificanceMetagenomic pathogen sequencing offers an unbiased approach to characterizing febrile illness. In resource-scarce settings with high biodiversity, it is critical to identify disease-causing pathogens in order to understand burden and to prioritize efforts for control. Here, metagenomic next-generation sequencing (mNGS) characterization of the pathogen landscape in Cambodia revealed diverse vector-borne and zoonotic pathogens irrespective of age and gender as risk factors. Identification of key pathogens led to changes in national program surveillance. This study is a "real world" example of the use of mNGS surveillance of febrile individuals, executed in-country, to identify outbreaks of vector-borne, zoonotic, and other emerging pathogens in a resource-scarce setting
    corecore