11 research outputs found

    Development of a Novel Virtual Screening Cascade Protocol to Identify Potential Trypanothione Reductase Inhibitors

    Get PDF
    The implementation of a novel sequential computational approach that can be used effectively for virtual screening and identification of prospective ligands that bind to trypanothione reductase (TryR) is reported. The multistep strategy combines a ligand-based virtual screening for building an enriched library of small molecules with a docking protocol (AutoDock, X-Score) for screening against the TryR target. Compounds were ranked by an exhaustive conformational consensus scoring approach that employs a rank-by-rank strategy by combining both scoring functions. Analysis of the predicted ligand-protein interactions highlights the role of bulky quaternary amine moieties for binding affinity. The scaffold hopping (SHOP) process derived from this computational approach allowed the identification of several chemotypes, not previously reported as antiprotozoal agents, which includes dibenzothiepine, dibenzooxathiepine, dibenzodithiepine, and polycyclic cationic structures like thiaazatetracyclo-nonadeca-hexaen-3-ium. Assays measuring the inhibiting effect of these compounds on T. cruzi and T. brucei TryR confirm their potential for further rational optimization

    Kukoamine A and other hydrophobic acylpolyamines: potent and selective inhibitors of Crithidia fasciculata trypanothione reductase.

    No full text
    The enzyme trypanothione reductase (TR), together with its substrate, the glutathione-spermidine conjugate trypanothione, plays an essential role in protecting parasitic trypanosomatids against oxidative stress and is a target for drug design. Here we show that a naturally occurring spermine derivative, the antihypertensive agent kukoamine A [N1N12-bis(dihydrocaffeoyl)-spermine] inhibits TR as a mixed inhibitor (Ki = 1.8 microM, Kii = 13 microM). Kukoamine shows no significant inhibition of human glutathione reductase (Ki > 10 mM) and thus provides a novel selective drug lead. The corresponding N1N8-bis(dihydrocaffeoyl)spermidine derivative was synthesized and acted as a purely competitive inhibitor with Ki = 7.5 microM. A series of mono- and di-acylated spermines and spermidines were synthesized to gain an insight into the effect of polyamine chain length, the nature and position of the acyl substituent and the importance of conformational mobility. These compounds inhibited TR with Ki values ranging from 11 to 607 microM

    Antitrypanosomal, antileishmanial, and antimalarial activities of quaternary arylalkylammonium 2-amino-4-chlorophenyl phenyl sulfides, a new class of trypanothione reductase inhibitor, and of N-acyl derivatives of 2-amino-4-chlorophenyl phenyl sulfide.

    Get PDF
    Quaternization of the nitrogen atom of 2-amino-4-chlorophenyl phenyl sulfide analogues of chlorpromazine improved inhibition approximately 40-fold (3',4'-dichlorobenzyl-[5-chloro-2-phenylsulfanyl-phenylamino)-propyl]-dimethylammonium chloride inhibited trypanothione reductase from Trypanosoma cruzi with a linear competitive Ki value of 1.7 +/- 0.2 microM). Molecular modelling explained docking orientations and energies by: (i) involvement of the Z-site hydrophobic pocket (roughly bounded by F396', P398', and L399'), (ii) ionic interactions for the cationic nitrogen with Glu-466' or -467'. A series of N-acyl-2-amino-4-chlorophenyl sulfides showed mixed inhibition (Ki, Ki' = 11.3-42.8 microM). The quaternized analogues of the 2-chlorophenyl phenyl sulfides had strong antitrypanosomal and antileishmanial activity in vitro against T. brucei rhodesiense STIB900, T. cruzi Tulahuan, and Leishmania donovani HU3. The N-acyl-2-amino-4-chlorophenyl sulfides were active against Plasmodium falciparum. The phenothiazine and diaryl sulfide quaternary compounds were also powerful antimalarials, providing a new structural framework for antimalarial design

    General Aspects of Tin-Free Antifouling Paints

    No full text
    corecore