25 research outputs found

    A Murine Model of falciparum-Malaria by In Vivo Selection of Competent Strains in Non-Myelodepleted Mice Engrafted with Human Erythrocytes

    Get PDF
    To counter the global threat caused by Plasmodium falciparum malaria, new drugs and vaccines are urgently needed. However, there are no practical animal models because P. falciparum infects human erythrocytes almost exclusively. Here we describe a reliable falciparum murine model of malaria by generating strains of P. falciparum in vivo that can infect immunodeficient mice engrafted with human erythrocytes. We infected NODscid/β2m−/− mice engrafted with human erythrocytes with P. falciparum obtained from in vitro cultures. After apparent clearance, we obtained isolates of P. falciparum able to grow in peripheral blood of engrafted NODscid/β2m−/− mice. Of the isolates obtained, we expanded in vivo and established the isolate Pf3D70087/N9 as a reference strain for model development. Pf3D70087/N9 caused productive persistent infections in 100% of engrafted mice infected intravenously. The infection caused a relative anemia due to selective elimination of human erythrocytes by a mechanism dependent on parasite density in peripheral blood. Using this model, we implemented and validated a reproducible assay of antimalarial activity useful for drug discovery. Thus, our results demonstrate that P. falciparum contains clones able to grow reproducibly in mice engrafted with human erythrocytes without the use of myeloablative methods

    Conditionally Lethal Escherichia coli

    No full text

    A Phosphinate Inhibitor of the meso

    No full text

    Development of a Whole-Cell Assay for Peptidoglycan Biosynthesis Inhibitors

    No full text
    Osmotically stabilized Escherichia coli cells subjected to freezing and thawing were utilized as the source of enzymes for a peptidoglycan pathway assay that can be used to simultaneously test all targets of the committed steps of cell wall biosynthesis. The use of (14)C-labeled UDP-N-acetylglucosamine (UDP-GlcNAc) as a substrate allows the direct detection of cross-linked peptidoglycan formed. The assay was validated with known antibiotics. Fosfomycin was the strongest inhibitor of the pathway assay, with a 50% inhibitory concentration of 1 μM. Flavomycin, bacitracin, vancomycin, d-cycloserine, penicillin G, and ampicillin also inhibited formation of radiolabeled peptidoglycan by the E. coli cells. Screening of compounds identified two inhibitors of the pathway, Cpd1 and Cpd2. Subsequent tests with a biochemical assay utilizing purified enzyme implicated UDP-GlcNAc enolpyruvyl transferase (MurA) as the target of Cpd1. This compound inhibits the first enzyme of the pathway in a time-dependent manner. Moreover, enzyme inactivation is dependent on preincubation in the presence of UDP-GlcNAc, which forms a complex with MurA, exposing its active site. Cpd1 also displayed antimicrobial activity against a panel of microorganisms. The pathway assay used in conjunction with assays for individual enzymes provides an efficient means of detecting and characterizing novel antimicrobial agents

    Regulated Expression of the Escherichia coli lepB Gene as a Tool for Cellular Testing of Antimicrobial Compounds That Inhibit Signal Peptidase I In Vitro

    No full text
    Escherichia coli under-expressing lepB was utilized to test cellular inhibition of signal peptidase I (SPase). For the construction of a lepB regulatable strain, the E. coli lepB gene was cloned into pBAD, with expression dependent on l-arabinose. The chromosomal copy of lepB was replaced with a kanamycin resistance gene, which was subsequently removed. SPase production by the lepB regulatable strain in the presence of various concentrations of l-arabinose was monitored by Western blot analysis. At lower arabinose concentrations growth proceeded more slowly, possibly due to a decrease of SPase levels in the cells. A penem SPase inhibitor with little antimicrobial activity against E. coli when tested at 100 μM was utilized to validate the cell-based system. Under-expression of lepB sensitized the cells to penem, with complete growth inhibition observed at 10 to 30 μM. Growth was rescued by increasing the SPase levels. The cell-based assay was used to test cellular inhibition of SPase by compounds that inhibit the enzyme in vitro. MD1, MD2, and MD3 are SPase inhibitors with antimicrobial activity against Staphylococcus aureus, although they do not inhibit growth of E. coli. MD1 presented the best spectrum of antimicrobial activity. Both MD1 and MD2 prevented growth of E. coli under-expressing lepB in the presence of polymyxin B nonapeptide, with growth rescue observed when wild-type levels of SPase were produced. MD3 and MD4, a reactive analog of MD3, inhibited growth of E. coli under-expressing lepB. However, growth rescue in the presence of these compounds following increased lepB expression was observed only after prolonged incubation
    corecore