1,613 research outputs found

    Observed Effects of a Changing Step-Edge Density on Thin-Film Growth Dynamics

    Full text link
    We grew SrTiO3 on SrTiO3 [001] by pulsed laser deposition, while observing x-ray diffraction at the (0 0 .5) position. The drop dI in the x-ray intensity following a laser pulse contains information about plume-surface interactions. Kinematic theory predicts dI/I = -4sigma(1-sigma), so that dI/I depends only on the amount of deposited material sigma. In contrast, we observed experimentally that |dI/I| < 4sigma(1-sigma), and that dI/I depends on the phase of x-ray growth oscillations. The combined results suggest a fast smoothing mechanism that depends on surface step-edge density.Comment: 4 figure

    Aerodynamic and Radiative Controls on the Snow Surface Temperature

    Get PDF
    Abstract The snow surface temperature (SST) is essential for estimating longwave radiation fluxes from snow. SST can be diagnosed using finescale multilayer snow physics models that track changes in snow properties and internal energy; however, these models are heavily parameterized, have high predictive uncertainty, and require continuous simulation to estimate prognostic state variables. Here, a relatively simple model to estimate SST that is not reliant on prognostic state variables is proposed. The model assumes that the snow surface is poorly connected thermally to the underlying snowpack and largely transparent for most of the shortwave radiation spectrum, such that a snow surface energy balance among only sensible heat, latent heat, longwave radiation, and near-infrared radiation is possible and is called the radiative psychrometric model (RPM). The RPM SST is sensitive to air temperature, humidity, ventilation, and longwave irradiance and is secondarily affected by absorption of near-infrared radiation at the snow surface that was higher where atmospheric deposition of particulates was more likely to be higher. The model was implemented with neutral stability, an implicit windless exchange coefficient, and constant shortwave absorption factors and aerodynamic roughness lengths. It was evaluated against radiative SST measurements from the Canadian Prairies and Rocky Mountains, French Alps, and Bolivian Andes. With optimized and global shortwave absorption and aerodynamic roughness length parameters, the model is shown to accurately predict SST under a wide range of conditions, providing superior predictions when compared to air temperature, dewpoint, or ice bulb calculation approaches.</jats:p

    On the importance of sublimation to an alpine snow mass balance in the Canadian Rocky Mountains

    Get PDF
    A modelling study was undertaken to evaluate the contribution of sublimation to an alpine snow mass balance in the Canadian Rocky Mountains. Snow redistribution and sublimation by wind, snowpack sublimation and snowmelt were simulated for two winters over an alpine ridge transect located in the Canada Rocky Mountains. The resulting snowcover regimes were compared to those from manual snow surveys. Simulations were performed using physically based blowing snow (PBSM) and snowpack ablation (SNOBAL) models. A hydrological response unit (HRU)-based spatial discretization was used rather than a more computationally expensive fully-distributed one. The HRUs were set up to follow an aerodynamic sequence, whereby eroded snow was transported from windswept, upwind HRUs to drift accumulating, downwind HRUs. That snow redistribution by wind can be adequately simulated in computationally efficient HRUs over this ridge has important implications for representing snow transport in large-scale hydrology models and land surface schemes. Alpine snow sublimation losses, in particular blowing snow sublimation losses, were significant. Snow mass losses to sublimation as a percentage of cumulative snowfall were estimated to be 20–32% with the blowing snow sublimation loss amounting to 17–19% of cumulative snowfall. This estimate is considered to be a conservative estimate of the blowing snow sublimation loss in the Canadian Rocky Mountains because the study transect is located in the low alpine zone where the topography is more moderate than the high alpine zone and windflow separation was not observed. An examination of the suitability of PBSM's sublimation estimates in this environment and of the importance of estimating blowing snow sublimation on the simulated snow accumulation regime was conducted by omitting sublimation calculations. Snow accumulation in HRUs was overestimated by 30% when neglecting blowing snow sublimation calculations

    Comparison of Algorithms and Parameterisations for Infiltration into Organic-Covered Permafrost Soils

    Get PDF
    Infiltration into frozen and unfrozen soils is critical in hydrology, controlling active layer soil water dynamics and influencing runoff. Few Land Surface Models (LSMs) and Hydrological Models (HMs) have been developed, adapted or tested for frozen conditions and permafrost soils. Considering the vast geographical area influenced by freeze/thaw processes and permafrost, and the rapid environmental change observed worldwide in these regions, a need exists to improve models to better represent their hydrology. In this study, various infiltration algorithms and parameterisation methods, which are commonly employed in current LSMs and HMs were tested against detailed measurements at three sites in Canada’s discontinuous permafrost region with organic soil depths ranging from 0.02 to 3 m. Field data from two consecutive years were used to calibrate and evaluate the infiltration algorithms and parameterisations. Important conclusions include: (1) the single most important factor that controls the infiltration at permafrost sites is ground thaw depth, (2) differences among the simulated infiltration by different algorithms and parameterisations were only found when the ground was frozen or during the initial fast thawing stages, but not after ground thaw reaches a critical depth of 15 to 30 cm, (3) despite similarities in simulated total infiltration after ground thaw reaches the critical depth, the choice of algorithm influenced the distribution of water among the soil layers, and (4) the ice impedance factor for hydraulic conductivity, which is commonly used in LSMs and HMs, may not be necessary once the water potential driven frozen soil parameterisation is employed. Results from this work provide guidelines that can be directly implemented in LSMs and HMs to improve their application in organic covered permafrost soils

    Pathogens, Social Networks, and the Paradox of Transmission Scaling

    Get PDF
    Understanding the scaling of transmission is critical to predicting how infectious diseases will affect populations of different sizes and densities. The two classic “mean-field” epidemic models—either assuming density-dependent or frequency-dependent transmission—make predictions that are discordant with patterns seen in either within-population dynamics or across-population comparisons. In this paper, we propose that the source of this inconsistency lies in the greatly simplifying “mean-field” assumption of transmission within a fully-mixed population. Mixing in real populations is more accurately represented by a network of contacts, with interactions and infectious contacts confined to the local social neighborhood. We use network models to show that density-dependent transmission on heterogeneous networks often leads to apparent frequency dependency in the scaling of transmission across populations of different sizes. Network-methodology allows us to reconcile seemingly conflicting patterns of within- and across-population epidemiology

    Vegetation and Topographic Control of Wind-blown Snow Distributions in Distributed and Aggregated Simulations for an Arctic Tundra Basin

    Get PDF
    In the Pacific Northwest (PNW), concern about the impacts of climate and land cover change on water resources and flood-generating processes emphasizes the need for a mechanistic understanding of the interactions between forest canopies and hydrologic processes. Detailed measurements during the 1999 and 2000 hydrologic years were used to modify the Simultaneous Heat and Water (SHAW) model for application in forested systems. Major changes to the model include improved representation of rainfall interception and stomatal conductance dynamics. The model was developed for the 1999 hydrologic year and tested for the 2000 hydrologic year without modification of the site parameters. The model effectively simulated throughfall, soil water content profiles, and shallow soil temperatures for both years. The largest discrepancies between soil moisture and temperature were observed during periods of discontinuous snow cover due to spatial variability that was not explicitly simulated by the model. Soil warming at bare locations was delayed until most of the snow cover ablated because of the large heat sink associated with the residual snow patches. During the summer, simulated transpiration decreased from a maximum monthly mean of 2.2 mm day⁻¹ in July to 1.3 mm day⁻¹ in September as a result of decreasing soil moisture and declining net radiation. The results indicate that a relatively simple representation of the vegetation canopy can accurately simulate seasonal hydrologic fluxes in this environment, except during periods of discontinuous snow cover
    corecore