100 research outputs found

    Dual parametrization of GPDs versus the double distribution Ansatz

    Full text link
    We establish a link between the dual parametrization of GPDs and a popular parametrization based on the double distribution Ansatz, which is in prevalent use in phenomenological applications. We compute several first forward-like functions that express the double distribution Ansatz for GPDs in the framework of the dual parametrization and show that these forward-like functions make the dominant contribution into the GPD quintessence function. We also argue that the forward-like functions Q2ν(x)Q_{2 \nu}(x) with ν≥1\nu \ge 1 contribute to the leading singular small-xBjx_{Bj} behavior of the imaginary part of DVCS amplitude. This makes the small-xBjx_{Bj} behavior of \im A^{DVCS} independent of the asymptotic behavior of PDFs. Assuming analyticity of Mellin moments of GPDs in the Mellin space we are able to fix the value of the DD-form factor in terms of the GPD quintessence function N(x,t)N(x,t) and the forward-like function Q0(x,t)Q_0(x,t).Comment: 18 pages, 5 figures. A version that appeared in Eur. Phys. J. A. Some of the statements were refined and misprints in the formulas were correcte

    Possibility of the existence of charmed exotica

    Full text link
    We employ the chiral quark-soliton model to describe excited baryons with one heavy quark. Identifying known charmed baryons with multiplets allowed by the model, we argue that apart from regular excitations of the ground state multiplets, some of recently reported by the LHCb collaboration narrow Ωc0\Omega^{0}_{c} states, may correspond to the exotic pentaquarks. This interpretation can be easily verified experimentally, since exotic Ωc0\Omega^{0}_{c} states -- contrary to the regular excitations -- form isospin triplets, rather than singlets.Comment: 9 pages, 3 figures. Published version. The title has been changed as appeared in the journa

    Leading Infrared Logarithms from Unitarity, Analyticity and Crossing

    Full text link
    We derive non-linear recursion equations for the leading infrared logarithms in massless non-renormalizable effective field theories. The derivation is based solely on the requirements of the unitarity, analyticity and crossing symmetry of the amplitudes. That emphasizes the general nature of the corresponding equations. The derived equations allow one to compute leading infrared logarithms to essentially unlimited loop order without performing a loop calculation. For the implementation of the recursion equation one needs to calculate tree diagrams only. The application of the equation is demonstrated on several examples of effective field theories in four and higher space-time dimensions.Comment: 12 page

    New LHCb pentaquarks as hadrocharmonium states

    Full text link
    New LHCb Collaboration results on pentaquarks with hidden charm [1] are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario [2,3]. In the new data the old LHCb pentaquark Pc(4450)P_c(4450) splits into two states Pc(4440)P_c(4440) and Pc(4457)P_c(4457). We interpret these two almost degenerate hadrocharmonium states with JP=1/2−J^P=1/2^- and JP=3/2−J^P=3/2^- as a result of hyperfine splitting between hadrocharmonium states predicted in [2]. It arises due to QCD multipole interaction between color-singlet hadrocharmonium constituents. We improve the theoretical estimate of hyperfine splitting [2,3] that is compatible with the experimental data. The new Pc(4312)P_c(4312) state finds a natural explanation as a bound state of χc0\chi_{c0} and a nucleon, with I=1/2I=1/2, JP=1/2+J^P=1/2^+ and binding energy 42 MeV. As a bound state of a spin-zero meson and a nucleon, hadrocharmonium pentaquark Pc(4312)P_c(4312) does not experience hyperfine splitting. We find a series of hadrocharmonium states in the vicinity of the wide Pc(4380)P_c(4380) pentaquark that can explain its apparently large decay width. We compare the hadrocharmonium and molecular pentaquark scenarios and discuss their relative advantages and drawbacks.Comment: 10 page
    • …
    corecore