3,803 research outputs found

    The effect of using local mean versus constant reference salinity to estimate Arctic Ocean freshwater content changes

    Get PDF
    Changes of high-latitude freshwater content (FWC) play an important role in shaping the variability of polar oceans. FWC is defined as depth-integrated departure of salinity from a reference salinity Sref divided by this Sref . A constant Sref is often used for high-latitude FWC estimates. Here it is argued that for analyzing FWC spatiotemporal changes the use of local mean Sref is a better choice. Analysis of 2007 FWC anomalies in the 25–75 m layer demonstrated, for example, that the choice of Sref = 34.8 (which is often used in climate studies) leads to FWC spatial anomalies exaggerated, on average, by ~0.6 m, which is a substantial fraction of total spatial FWC changes. The problem is aggravated in areas where the difference between the local Sref and Sref = 34.8 is greater. Thus, it is concluded that using climatological mean salinities as Sref provides superior estimates of spatiotemporal Arctic Ocean FWC changes.Changes of high-latitude freshwater content (FWC) play an important role in shaping the variability of polar oceans. FWC is defined as depth-integrated departure of salinity from a reference salinity Sref divided by this Sref . A constant Sref is often used for high-latitude FWC estimates. Here it is argued that for analyzing FWC spatiotemporal changes the use of local mean Sref is a better choice. Analysis of 2007 FWC anomalies in the 25–75 m layer demonstrated, for example, that the choice of Sref = 34.8 (which is often used in climate studies) leads to FWC spatial anomalies exaggerated, on average, by ~0.6 m, which is a substantial fraction of total spatial FWC changes. The problem is aggravated in areas where the difference between the local Sref and Sref = 34.8 is greater. Thus, it is concluded that using climatological mean salinities as Sref provides superior estimates of spatiotemporal Arctic Ocean FWC changes

    K*-couplings for the antidecuplet excitation

    Full text link
    We estimate the coupling of the K* vector meson to the N-->Theta+ transition employing unitary symmetry, vector meson dominance, and results from the GRAAL Collaboration for eta photoproduction off the neutron. Our small numerical value for the coupling constant is consistent with the non-observation of the Theta+ in recent CLAS searches for its photoproduction. We also estimate the K*-coupling for the N-->Sigma* excitation, with Sigma* being the Sigma-like antidecuplet partner of the Theta+-baryon.Comment: 9 pages, 1 figure. Minor changes in text and abstract, references added; version to appear in Phys. Rev.

    Extraction of radiative decay width for the non-strange partner of Theta^+

    Full text link
    Using the results of the GRAAL collaboration on the \eta photoproduction from the neutron target, we attempt to extract the partial radiative width of the possible new nucleon resonance N^*(1675). The obtained estimates support this resonance to be a very attractive candidate for the non-strange member of the exotic antidecuplet of baryons -- a partner of the \Theta^+ pentaquark. Our phenomenological value for the transition magnetic moment \mu(n^* n), appears to be in good agreement with predictions of the Chiral Quark Soliton Model.Comment: 4 pages, v2 corresponds to the journal publicatio

    New LHCb pentaquarks as hadrocharmonium states

    Full text link
    New LHCb Collaboration results on pentaquarks with hidden charm [1] are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario [2,3]. In the new data the old LHCb pentaquark Pc(4450)P_c(4450) splits into two states Pc(4440)P_c(4440) and Pc(4457)P_c(4457). We interpret these two almost degenerate hadrocharmonium states with JP=1/2J^P=1/2^- and JP=3/2J^P=3/2^- as a result of hyperfine splitting between hadrocharmonium states predicted in [2]. It arises due to QCD multipole interaction between color-singlet hadrocharmonium constituents. We improve the theoretical estimate of hyperfine splitting [2,3] that is compatible with the experimental data. The new Pc(4312)P_c(4312) state finds a natural explanation as a bound state of χc0\chi_{c0} and a nucleon, with I=1/2I=1/2, JP=1/2+J^P=1/2^+ and binding energy 42 MeV. As a bound state of a spin-zero meson and a nucleon, hadrocharmonium pentaquark Pc(4312)P_c(4312) does not experience hyperfine splitting. We find a series of hadrocharmonium states in the vicinity of the wide Pc(4380)P_c(4380) pentaquark that can explain its apparently large decay width. We compare the hadrocharmonium and molecular pentaquark scenarios and discuss their relative advantages and drawbacks.Comment: 10 page
    corecore