1,005 research outputs found

    The s-process in stellar population synthesis: a new approach to understanding AGB stars

    Get PDF
    Thermally pulsating asymptotic giant branch (AGB) stars are the main producers of slow neutron capture (s-) process elements, but there are still large uncertainties associated with the formation of the main neutron source, 13C, and with the physics of these stars in general. Observations of s-process element enhancements in stars can be used as constraints on theoretical models. For the first time we apply stellar population synthesis to the problem of s-process nucleosynthesis in AGB stars, in order to derive constraints on free parameters describing the physics behind the third dredge-up and the properties of the neutron source. We utilize a rapid evolution and nucleosynthesis code to synthesize different populations of s-enhanced stars, and compare them to their observational counterparts to find out for which values of the free parameters in the code the synthetic populations fit best to the observed populations. These free parameters are the amount of third dredge-up, the minimum core mass for third dredge-up, the effectiveness of 13C as a source of neutrons and the size in mass of the 13C pocket. We find that galactic disk objects are reproduced by a spread of a factor of two in the effectiveness of the 13C neutron source. Lower metallicity objects can be reproduced only by lowering by at least a factor of 3 the average value of the effectiveness of the 13C neutron source needed for the galactic disk objects. Using observations of s-process elements in post-AGB stars as constraints we find that dredge-up has to start at a lower core mass than predicted by current theoretical models, that it has to be substantial (λ\lambda >~ 0.2) in stars with mass M <~ 1.5 M_sun and that the mass of the 13C pocket must be about 1/40 that of the intershell region.Comment: 16 pages, 15 figures, accepted for publication in Astronomy & Astrophysic

    The late stages of evolution of helium star-neutron star binaries and the formation of double neutron star systems

    Full text link
    With a view to understanding the formation of double neutron-stars (DNS), we investigate the late stages of evolution of helium stars with masses of 2.8 - 6.4 Msun in binary systems with a 1.4 Msun neutron-star companion. We found that mass transfer from 2.8 - 3.3 Msun helium stars and from 3.3 - 3.8 Msun in very close orbits (P_orb > 0.25d) will end up in a common-envelope (CE) and spiral-in phase due to the development of a convective helium envelope. If the neutron star has sufficient time to complete the spiraling-in process before the core collapses, the system will produce very tight DNSs (P_orb ~ 0.01d) with a merger timescale of the order of 1 Myr or less. These systems would have important consequences for the detection rate of GWR and for the understanding of GRB progenitors. On the other hand, if the time left until the explosion is shorter than the orbital-decay timescale, the system will undergo a SN explosion during the CE phase. Helium stars with masses 3.3 - 3.8 Msun in wider orbits (P_orb > 0.25d) and those more massive than 3.8 Msun do not go through CE evolution. The remnants of these massive helium stars are DNSs with periods in the range of 0.1 - 1 d. This suggests that this range of mass includes the progenitors of the galactic DNSs with close orbits (B1913+16 and B1534+12). A minimum kick velocity of 70 km/s and 0 km/s (for B1913+16 and B1534+12, respectively) must have been imparted at the birth of the pulsar's companion. The DNSs with wider orbits (J1518+4904 and probably J1811-1736) are produced from helium star-neutron star binaries which avoid RLOF, with the helium star more massive than 2.5 Msun. For these systems the minimum kick velocities are 50 km/s and 10 km/s (for J1518+4904 and J1811-1736, respectively).Comment: 16 pages, latex, 12 figures, accepted for publication in MNRA

    Models of Ultraluminous X-Ray Sources with Intermediate-Mass Black Holes

    Full text link
    We have computed models for ultraluminous X-ray sources ("ULXs") consisting of a black-hole accretor of intermediate mass ("IMBH"; e.g., ~1000 Msun) and a captured donor star. For each of four different sets of initial donor masses and orbital separations, we computed 30,000 binary evolution models using a full Henyey stellar evolution code. To our knowledge this is the first time that a population of X-ray binaries this large has been carried out with other than approximation methods, and it serves to demonstrate the feasibility of this approach to large-scale population studies of mass-transfer binaries. In the present study, we find that in order to have a plausible efficiency for producing active ULX systems with IMBHs having luminosities > 10^{40} ergs/sec, there are two basic requirements for the capture of companion/donor stars. First, the donor stars should be massive, i.e., > 8 Msun. Second, the initial orbital separations, after circularization, should be close, i.e., < 6-30 times the radius of the donor star when on the main sequence. Even under these optimistic conditions, we show that the production rate of IMBH-ULX systems may fall short of the observed values by factors of 10-100.Comment: 5 pages, 2 figures, submitted to Ap

    The Luminosity & Mass Function of the Trapezium Cluster: From B stars to the Deuterium Burning Limit

    Get PDF
    We use the results of a new, multi-epoch, multi-wavelength, near-infrared census of the Trapezium Cluster in Orion to construct and to analyze the structure of its infrared (K band) luminosity function. Specifically, we employ an improved set of model luminosity functions to derive this cluster's underlying Initial Mass Function (IMF) across the entire range of mass from OB stars to sub-stellar objects down to near the deuterium burning limit. We derive an IMF for the Trapezium Cluster that rises with decreasing mass, having a Salpeter-like IMF slope until near ~0.6 M_sun where the IMF flattens and forms a broad peak extending to the hydrogen burning limit, below which the IMF declines into the sub-stellar regime. Independent of the details, we find that sub-stellar objects account for no more than ~22% of the total number of likely cluster members. Further, the sub-stellar Trapezium IMF breaks from a steady power-law decline and forms a significant secondary peak at the lowest masses (10-20 times the mass of Jupiter). This secondary peak may contain as many as \~30% of the sub-stellar objects in the cluster. Below this sub-stellar IMF peak, our KLF modeling requires a subsequent sharp decline toward the planetary mass regime. Lastly, we investigate the robustness of pre-main sequence luminosity evolution as predicted by current evolutionary models, and we discuss possible origins for the IMF of brown dwarfs.Comment: 74 pages, 30 figures, AASTeX5.0. To be published in the 01 July 2002 ApJ. For color version of figure 1 and online data table see http://www.astro.ufl.edu/~muench/PUB/publications.htm

    The Evolution of Relativistic Binary Progenitor Systems

    Get PDF
    Relativistic binary pulsars, such as B1534+12 and B1913+16 are characterized by having close orbits with a binary separation of ~ 3 R_\sun. The progenitor of such a system is a neutron star, helium star binary. The helium star, with a strong stellar wind, is able to spin up its compact companion via accretion. The neutron star's magnetic field is then lowered to observed values of about 10^{10} Gauss. As the pulsar lifetime is inversely proportional to its magnetic field, the possibility of observing such a system is, thus, enhanced by this type of evolution. We will show that a nascent (Crab-like) pulsar in such a system can, through accretion-braking torques (i.e. the "propeller effect") and wind-induced spin-up rates, reach equilibrium periods that are close to observed values. Such processes occur within the relatively short helium star lifetimes. Additionally, we find that the final outcome of such evolutionary scenarios depends strongly on initial parameters, particularly the initial binary separation and helium star mass. It is, indeed, determined that the majority of such systems end up in the pulsar "graveyard", and only a small fraction are strongly recycled. This fact might help to reconcile theoretically expected birth rates with limited observations of relativistic binary pulsars.Comment: 24 pages, 10 Postscript figures, Submitted to The Astrophysical Journa

    The Heart of the Matter. About Good Nursing and Telecare

    Get PDF
    Nurses and ethicists worry that the implementation of care at a distance or telecare will impoverish patient care by taking out ‘the heart’ of the clinical work. This means that telecare is feared to induce the neglect of patients, and to possibly hinder the development of a personal relation between nurse and patient. This study aims to analyse whether these worries are warranted by analysing Dutch care practices using telemonitoring in care for chronic patients in the Netherlands. How do clinical practices of nursing change when telecare devices are introduced and what this means for notions and norms of good nursing? The paper concludes that at this point the practices studied do not warrant the fear of negligence and compromised relations. Quite the contrary; in the practices studied, telecare lead to more frequent and more specialised contacts between nurses and patients. The paper concludes by reflecting on the ethical implications of these changes

    Gravitational settling in pulsating subdwarf B stars and their progenitors

    Get PDF
    Diffusion of atoms can be important during quiescent phases of stellar evolution. Particularly in the very thin inert envelopes of subdwarf B stars, diffusive movements will considerably change the envelope structure and the surface abundances on a short timescale. Also, the subdwarfs will inherit the effects of diffusion in their direct progenitors, namely giants near the tip of the red giant branch. This will influence the global evolution and the pulsational properties of subdwarf B stars. We investigate the impact of gravitational settling, thermal diffusion and concentration diffusion on the evolution and pulsations of subdwarf B stars. Our diffusive stellar models are compared with models evolved without diffusion. We constructed subdwarf B models with a mass of 0.465 Msun from a 1 and 3 Msun ZAMS progenitor. The low mass star ignited helium in an energetic flash, while the intermediate mass star started helium fusion gently. For each progenitor type we computed series with and without atomic diffusion. Atomic diffusion in red giants causes the helium core mass at the onset of helium ignition to be larger. We find an increase of 0.0015 Msun for the 1 Msun model and 0.0036 Msun for the 3 Msun model. The effects on the red giant surface abundances are small after the first dredge up. The evolutionary tracks of the diffusive subdwarf B models are shifted to lower surface gravities and effective temperatures due to outward diffusion of hydrogen. This affects both the frequencies of the excited modes and the overall frequency spectrum. Especially the structure and pulsations of the post-non-degenerate sdB star are drastically altered, proving that atomic diffusion cannot be ignored in these stars.Comment: 10 pages, 6 figures, accepted for publication in A&
    • 

    corecore