374 research outputs found

    When Stars Collide

    Full text link
    When two stars collide and merge they form a new star that can stand out against the background population in a starcluster as a blue straggler. In so called collision runaways many stars can merge and may form a very massive star that eventually forms an intermediate mass blackhole. We have performed detailed evolution calculations of merger remnants from collisions between main sequence stars, both for lower mass stars and higher mass stars. These stars can be significantly brighter than ordinary stars of the same mass due to their increased helium abundance. Simplified treatments ignoring this effect give incorrect predictions for the collision product lifetime and evolution in the Hertzsprung-Russell diagram.Comment: 8 pages, 5 figures to appear in the proceedings for "Unsolved Problems in Stellar Physics", Cambridge, 2-6 July 200

    Building Blue Stragglers with Stellar Collisions

    Full text link
    The evolution of stellar collision products in cluster simulations has usually been modelled using simplified prescriptions. Such prescriptions either replace the collision product with an (evolved) main sequence star, or assume that the collision product was completely mixed during the collision. It is known from hydrodynamical simulations of stellar collisions that collision products are not completely mixed, however. We have calculated the evolution of stellar collision products and find that they are brighter than normal main sequence stars of the same mass, but not as blue as models that assume that the collision product was fully mixed during the collision.Comment: 2 pages, 1 figure. To appear in the proceedings of Dynamical Evolution of Dense Stellar Systems, IAU Symposium 24

    Can low metallicity binaries avoid merging?

    Full text link
    Rapid mass transfer in a binary system can drive the accreting star out of thermal equilibrium, causing it to expand. This can lead to a contact system, strong mass loss from the system and possibly merging of the two stars. In low metallicity stars the timescale for heat transport is shorter due to the lower opacity. The accreting star can therefore restore thermal equilibrium more quickly and possibly avoid contact. We investigate the effect of accretion onto main sequence stars with radiative envelopes with different metallicities. We find that a low metallicity (Z<0.001), 4 solar mass star can endure a 10 to 30 times higher accretion rate before it reaches a certain radius than a star at solar metallicity. This could imply that up to two times fewer systems come into contact during rapid mass transfer when we compare low metallicity. This factor is uncertain due to the unknown distribution of binary parameters and the dependence of the mass transfer timescale on metallicity. In a forthcoming paper we will present analytic fits to models of accreting stars at various metallicities intended for the use in population synthesis models.Comment: To appear in the proceedings of "First Stars III", Santa Fe, New Mexico, July 16-20, 2007, 3 pages, 2 figure

    Carbon-enhanced metal-poor stars: a window on AGB nucleosynthesis and binary evolution. I. Detailed analysis of 15 binary stars with known orbital periods

    Get PDF
    AGB stars are responsible for producing a variety of elements, including carbon, nitrogen, and the heavy elements produced in the slow neutron-capture process (ss-elements). There are many uncertainties involved in modelling the evolution and nucleosynthesis of AGB stars, and this is especially the case at low metallicity, where most of the stars with high enough masses to enter the AGB have evolved to become white dwarfs and can no longer be observed. The stellar population in the Galactic halo is of low mass (≲0.85M⊙\lesssim 0.85M_{\odot}) and only a few observed stars have evolved beyond the first giant branch. However, we have evidence that low-metallicity AGB stars in binary systems have interacted with their low-mass secondary companions in the past. The aim of this work is to investigate AGB nucleosynthesis at low metallicity by studying the surface abundances of chemically peculiar very metal-poor stars of the halo observed in binary systems. To this end we select a sample of 15 carbon- and ss-element-enhanced metal-poor (CEMP-ss) halo stars that are found in binary systems with measured orbital periods. With our model of binary evolution and AGB nucleosynthesis, we determine the binary configuration that best reproduces, at the same time, the observed orbital period and surface abundances of each star of the sample. The observed periods provide tight constraints on our model of wind mass transfer in binary stars, while the comparison with the observed abundances tests our model of AGB nucleosynthesis.Comment: 18 pages, 20 figures, accepted for publication on A&

    Models for the Observable System Parameters of Ultraluminous X-ray Sources

    Full text link
    We investigate the evolution of the properties of model populations of ultraluminous X-ray sources (ULXs) consisting of a black-hole accretor in a binary with a donor star. We have computed models corresponding to three different populations of black-hole binaries; two invoke stellar-mass (~10 Msun) black hole accretors, and the third utilizes intermediate-mass (~1000 Msun) black holes (IMBHs). For each of the three populations, we computed 30,000 binary evolution sequences using a full Henyey stellar evolution code. The optical flux from the model ULXs includes contributions from the accretion disk, due to x-ray irradiation as well as intrinsic viscous heating, and that due to the donor star. We present "probability images" for the ULX systems in planes of color-magnitude, orbital period vs. X-ray luminosity, and luminosity vs. evolution time. Estimates of the numbers of ULXs in a typical galaxy as functions of time and of X-ray luminosity are also presented. Our model CMDs are compared with six ULX counterparts that have been discussed in the literature. Overall, the observed systems seem more closely related to model systems with very high-mass donors (> ~25 Msun) in binaries with IMBH accretors. However, significant difficulties remain with both the IMBH and stellar-mass black hole models.Comment: 15 pages, 8 figures, submitted to ApJ on Oct 05, 200

    Carbon-enhanced metal-poor stars: a window on AGB nucleosynthesis and binary evolution. II. Statistical analysis of a sample of 67 CEMP-ss stars

    Get PDF
    Many observed CEMP stars are found in binary systems and show enhanced abundances of ss-elements. The origin of the chemical abundances of these CEMP-ss stars is believed to be accretion in the past of enriched material from a primary star in the AGB phase. We investigate the mechanism of mass transfer and the process of nucleosynthesis in low-metallicity AGB stars by modelling the binary systems in which the observed CEMP-ss stars were formed. For this purpose we compare a sample of 6767 CEMP-ss stars with a grid of binary stars generated by our binary evolution and nucleosynthesis model. We classify our sample CEMP-ss stars in three groups based on the observed abundance of europium. In CEMP−s/r-s/r stars the europium-to-iron ratio is more than ten times higher than in the Sun, whereas it is lower than this threshold in CEMP−s/nr-s/nr stars. No measurement of europium is currently available for CEMP-s/urs/ur stars. On average our models reproduce well the abundances observed in CEMP-s/nrs/nr stars, whereas in CEMP-s/rs/r stars and CEMP-s/urs/ur stars the abundances of the light-ss elements are systematically overpredicted by our models and in CEMP-s/rs/r stars the abundances of the heavy-ss elements are underestimated. In all stars our modelled abundances of sodium overestimate the observations. This discrepancy is reduced only in models that underestimate the abundances of most of the ss-elements. Furthermore, the abundance of lead is underpredicted in most of our model stars. These results point to the limitations of our AGB nucleosynthesis model, particularly in the predictions of the element-to-element ratios. Finally, in our models CEMP-ss stars are typically formed in wide systems with periods above 10000 days, while most of the observed CEMP-ss stars are found in relatively close orbits with periods below 5000 days.Comment: 23 pages, 8 figures, accepted for publication on Astronomy & Astrophysic

    Binaries at Low Metallicity: ranges for case A, B and C mass transfer

    Full text link
    The evolution of single stars at low metallicity has attracted a large interest, while the effect of metallicity on binary evolution remains still relatively unexplored. We study the effect of metallicity on the number of binary systems that undergo different cases of mass transfer. We find that binaries at low metallicity are more likely to start transferring mass after the onset of central helium burning, often referred to as case C mass transfer. In other words, the donor star in a metal poor binary is more likely to have formed a massive CO core before the onset of mass transfer. At solar metallicity the range of initial binary separations that result in case C evolution is very small for massive stars, because they do not expand much after the ignition of helium and because mass loss from the system by stellar winds causes the orbit to widen, preventing the primary star to fill its Roche lobe. This effect is likely to have important consequences for the metallicity dependence of the formation rate of various objects through binary evolution channels, such as long GRBs, double neutron stars and double white dwarfs.Comment: To appear in the proceedings of "First Stars III", Santa Fe, New Mexico, July 16-20, 2007, 3 pages, 3 figure

    The s-process in stellar population synthesis: a new approach to understanding AGB stars

    Get PDF
    Thermally pulsating asymptotic giant branch (AGB) stars are the main producers of slow neutron capture (s-) process elements, but there are still large uncertainties associated with the formation of the main neutron source, 13C, and with the physics of these stars in general. Observations of s-process element enhancements in stars can be used as constraints on theoretical models. For the first time we apply stellar population synthesis to the problem of s-process nucleosynthesis in AGB stars, in order to derive constraints on free parameters describing the physics behind the third dredge-up and the properties of the neutron source. We utilize a rapid evolution and nucleosynthesis code to synthesize different populations of s-enhanced stars, and compare them to their observational counterparts to find out for which values of the free parameters in the code the synthetic populations fit best to the observed populations. These free parameters are the amount of third dredge-up, the minimum core mass for third dredge-up, the effectiveness of 13C as a source of neutrons and the size in mass of the 13C pocket. We find that galactic disk objects are reproduced by a spread of a factor of two in the effectiveness of the 13C neutron source. Lower metallicity objects can be reproduced only by lowering by at least a factor of 3 the average value of the effectiveness of the 13C neutron source needed for the galactic disk objects. Using observations of s-process elements in post-AGB stars as constraints we find that dredge-up has to start at a lower core mass than predicted by current theoretical models, that it has to be substantial (λ\lambda >~ 0.2) in stars with mass M <~ 1.5 M_sun and that the mass of the 13C pocket must be about 1/40 that of the intershell region.Comment: 16 pages, 15 figures, accepted for publication in Astronomy & Astrophysic
    • …
    corecore