775 research outputs found

    The Puzzling Frequencies of CEMP and NEMP Stars

    Full text link
    We present the results of binary population simulations of carbon- and nitrogen-enhanced metal-poor (CEMP and NEMP) stars. We show that the observed paucity of very nitrogen-rich stars puts strong constraints on possible modifications of the initial mass function at low metallicity.Comment: 3 pages, contribution to "The Origin of the Elements Heavier than Iron" in honor of the 70th birthday of Roberto Gallino, Torino, Italy, September 200

    Third Dredge-up in Low Mass Stars: Solving the LMC Carbon Star Mystery

    Full text link
    A long standing problem with asymptotic giant branch (AGB) star models has been their inability to produce the low-luminosity carbon stars in the Large and Small Magellanic Clouds. Dredge-up must begin earlier and extend deeper. We find this for the first time in our models of LMC metallicity. Such features are not found in our models of SMC metallicity. The fully implicit and simultaneous stellar evolution code STARS has been used to calculate the evolution of AGB stars with metallicities of Z=0.008 and Z=0.004, corresponding to the observed metallicities of the Large and Small Magellanic Clouds, respecitively. Third dredge-up occurs in stars of 1Msol and above and carbon stars were found for models between 1Msol and 3Msol. We use the detailed models as input physics for a population synthesis code and generate carbon star luminosity functions. We now find that we are able to reproduce the carbon star luminosity function of the LMC without any manipulation of our models. The SMC carbon star luminosity function still cannot be produced from our detailed models unless the minimum core mass for third dredge-up is reduced by 0.06Msol.Comment: 6 pages, 5 figures. Accepted for publication in MNRA

    Modelling the observed properties of carbon-enhanced metal-poor stars using binary population synthesis

    Get PDF
    The stellar population in the Galactic halo is characterised by a large fraction of CEMP stars. Most CEMP stars are enriched in ss-elements (CEMP-ss stars), and some of these are also enriched in rr-elements (CEMP-s/rs/r stars). One formation scenario proposed for CEMP stars invokes wind mass transfer in the past from a TP-AGB primary star to a less massive companion star which is presently observed. We generate low-metallicity populations of binary stars to reproduce the observed CEMP-star fraction. In addition, we aim to constrain our wind mass-transfer model and investigate under which conditions our synthetic populations reproduce observed abundance distributions. We compare the CEMP fractions and the abundance distributions determined from our synthetic populations with observations. Several physical parameters of the binary stellar population of the halo are uncertain, e.g. the initial mass function, the mass-ratio and orbital-period distributions, and the binary fraction. We vary the assumptions in our model about these parameters, as well as the wind mass-transfer process, and study the consequent variations of our synthetic CEMP population. The CEMP fractions calculated in our synthetic populations vary between 7% and 17%, a range consistent with the CEMP fractions among very metal-poor stars recently derived from the SDSS/SEGUE data sample. The results of our comparison between the modelled and observed abundance distributions are different for CEMP-s/rs/r stars and for CEMP-ss stars. For the latter, our simulations qualitatively reproduce the observed distributions of C, Na, Sr, Ba, Eu, and Pb. Contrarily, for CEMP-s/rs/r stars our model cannot reproduce the large abundances of neutron-rich elements such as Ba, Eu, and Pb. This result is consistent with previous studies, and suggests that CEMP-s/rs/r stars experienced a different nucleosynthesis history to CEMP-ss stars.Comment: 17 pages, 11 figures, accepted for publication on Astronomy and Astrophysic

    Critically rotating stars in binaries - an unsolved problem -

    Full text link
    In close binaries mass and angular momentum can be transferred from one star to the other during Roche-lobe overflow. The efficiency of this process is not well understood and constitutes one of the largest uncertainties in binary evolution. One of the problems lies in the transfer of angular momentum, which will spin up the accreting star. In very tight systems tidal friction can prevent reaching critical rotation, by locking the spin period to the orbital period. Accreting stars in systems with orbital periods larger than a few days reach critical rotation after accreting only a fraction of their mass, unless there is an effective mechanism to get rid of angular momentum. In low mass stars magnetic field might help. In more massive stars angular momentum loss will be accompanied by strong mass loss. This would imply that most interacting binaries with initial orbital periods larger than a few days evolve very non-conservatively. In this contribution we wish to draw attention to the unsolved problems related to mass and angular momentum transfer in binary systems. We do this by presenting the first results of an implementation of spin up by accretion into the TWIN version of the Eggleton stellar evolution code.Comment: 5 pages, 1 figure, to appear in the proceedings of the conference "Unsolved Problems in Stellar Physics", Cambridge, 2-6 July 200

    The Luminosity & Mass Function of the Trapezium Cluster: From B stars to the Deuterium Burning Limit

    Get PDF
    We use the results of a new, multi-epoch, multi-wavelength, near-infrared census of the Trapezium Cluster in Orion to construct and to analyze the structure of its infrared (K band) luminosity function. Specifically, we employ an improved set of model luminosity functions to derive this cluster's underlying Initial Mass Function (IMF) across the entire range of mass from OB stars to sub-stellar objects down to near the deuterium burning limit. We derive an IMF for the Trapezium Cluster that rises with decreasing mass, having a Salpeter-like IMF slope until near ~0.6 M_sun where the IMF flattens and forms a broad peak extending to the hydrogen burning limit, below which the IMF declines into the sub-stellar regime. Independent of the details, we find that sub-stellar objects account for no more than ~22% of the total number of likely cluster members. Further, the sub-stellar Trapezium IMF breaks from a steady power-law decline and forms a significant secondary peak at the lowest masses (10-20 times the mass of Jupiter). This secondary peak may contain as many as \~30% of the sub-stellar objects in the cluster. Below this sub-stellar IMF peak, our KLF modeling requires a subsequent sharp decline toward the planetary mass regime. Lastly, we investigate the robustness of pre-main sequence luminosity evolution as predicted by current evolutionary models, and we discuss possible origins for the IMF of brown dwarfs.Comment: 74 pages, 30 figures, AASTeX5.0. To be published in the 01 July 2002 ApJ. For color version of figure 1 and online data table see http://www.astro.ufl.edu/~muench/PUB/publications.htm

    The evolution of naked helium stars with a neutron-star companion in close binary systems

    Get PDF
    The evolution of helium stars with masses of 1.5 - 6.7 M_sun in binary systems with a 1.4 M_sun neutron-star companion is presented. Such systems are assumed to be the remnants of Be/X-ray binaries with B-star masses in the range of 8 - 20 M_sun which underwent a case B or case C mass transfer and survived the common-envelope and spiral-in process. The orbital period is chosen such that the helium star fills its Roche lobe before the ignition of carbon in the centre. We distinguish case BA (in which mass transfer is initiated during helium core burning) from case BB (onset of Roche-lobe overflow occurs after helium core burning is terminated, but before the ignition of carbon). We found that the remnants of case BA mass transfer from 1.5 - 2.9 M_sun helium stars are heavy CO white dwarfs. This implies that a star initially as massive as 12 M_sun is able to become a white dwarf. CO white dwarfs are also produced from case BB mass transfer from 1.5 - 1.8 M_sun helium stars, while ONe white dwarfs are formed from 2.1 - 2.5 M_sun helium stars. Case BB mass transfer from more-massive helium stars with a neutron-star companion will produce a double neutron-star binary. We are able to distinguish the progenitors of type Ib supernovae (as the high-mass helium stars or systems in wide orbits) from those of type Ic supernovae (as the lower-mass helium stars or systems in close orbits). Finally, we derive a "zone of avoidance" in the helium star mass vs. initial orbital period diagram for producing neutron stars from helium stars.Comment: 16 pages, latex, 11 figures, accepted for publication in MNRA

    Extent of pollution in planet-bearing stars

    Full text link
    (abridged) Search for planets around main-sequence (MS) stars more massive than the Sun is hindered by their hot and rapidly spinning atmospheres. This obstacle has been sidestepped by radial-velocity surveys of those stars on their post-MS evolutionary track (G sub-giant and giant stars). Preliminary observational findings suggest a deficiency of short-period hot Jupiters around the observed post MS stars, although the total fraction of them with known planets appears to increase with their mass. Here we consider the possibility that some very close- in gas giants or a population of rocky planets may have either undergone orbital decay or been engulfed by the expanding envelope of their intermediate-mass host stars. If such events occur during or shortly after those stars' main sequence evolution when their convection zone remains relatively shallow, their surface metallicity can be significantly enhanced by the consumption of one or more gas giants. We show that stars with enriched veneer and lower-metallicity interior follow slightly modified evolution tracks as those with the same high surface and interior metallicity. As an example, we consider HD149026, a marginal post MS 1.3 Msun star. We suggest that its observed high (nearly twice solar) metallicity may be confined to the surface layer as a consequence of pollution by the accretion of either a planet similar to its known 2.7-day-period Saturn-mass planet, which has a 70 Mearth compact core, or a population of smaller mass planets with a comparable total amount of heavy elements. It is shown that an enhancement in surface metallicity leads to a reduction in effective temperature, in increase in radius and a net decrease in luminosity. The effects of such an enhancement are not negligible in the determinations of the planet's radius based on the transit light curves.Comment: 25 pages, 8 figures, submitted to Ap

    The Evolution of Relativistic Binary Progenitor Systems

    Get PDF
    Relativistic binary pulsars, such as B1534+12 and B1913+16 are characterized by having close orbits with a binary separation of ~ 3 R_\sun. The progenitor of such a system is a neutron star, helium star binary. The helium star, with a strong stellar wind, is able to spin up its compact companion via accretion. The neutron star's magnetic field is then lowered to observed values of about 10^{10} Gauss. As the pulsar lifetime is inversely proportional to its magnetic field, the possibility of observing such a system is, thus, enhanced by this type of evolution. We will show that a nascent (Crab-like) pulsar in such a system can, through accretion-braking torques (i.e. the "propeller effect") and wind-induced spin-up rates, reach equilibrium periods that are close to observed values. Such processes occur within the relatively short helium star lifetimes. Additionally, we find that the final outcome of such evolutionary scenarios depends strongly on initial parameters, particularly the initial binary separation and helium star mass. It is, indeed, determined that the majority of such systems end up in the pulsar "graveyard", and only a small fraction are strongly recycled. This fact might help to reconcile theoretically expected birth rates with limited observations of relativistic binary pulsars.Comment: 24 pages, 10 Postscript figures, Submitted to The Astrophysical Journa

    WIYN Open Cluster Study 1: Deep Photometry of NGC 188

    Get PDF
    We have employed precise V and I photometry of NGC 188 at WIYN to explore the cluster luminosity function (LF) and study the cluster white dwarfs (WDs). Our photometry is offset by V = 0.052 (fainter) from Sandage (1962) and Eggen & Sandage (1969). All published photometry for the past three decades have been based on these two calibrations, which are in error by 0.05 +- 0.01. We employ the Pinsonneault etal (1998) fiducial main sequence to derive a cluster distance modulus of 11.43 +- 0.08. We report observations that are >= 50% complete to V = 24.6 and find that the cluster central-field LF peaks at M_I ~ 3 to 4. This is unlike the solar neighborhood LF and unlike the LFs of dynamically unevolved portions of open and globular clusters, which rise continuously until M_I ~ 9.5. Although we find that >= 50% of the unresolved cluster objects are multiple systems, their presence cannot account for the shape of the NGC 188 LF. For theoretical reasons (Terlevich 1987; Vesperini & Heggie 1997) having to do with the survivability of NGC 188 we believe the cluster is highly dynamically evolved and that the missing low luminosity stars are either in the cluster outskirts or have left the cluster altogether. We identify nine candidate WDs, of which we expect three to six are bona fide cluster WDs. The luminosities of the faintest likely WD indicates an age (Bergeron, Wesemael, & Beauchamp 1995) of 1.14 +- 0.09 Gyrs. This is a lower limit to the cluster age and observations probing to V = 27 or 28 will be necessary to find the faintest cluster WDs and independently determine the cluster age. While our age limit is not surprising for this ~6 Gyr old cluster, our result demonstrates the value of the WD age technique with its very low internal errors. (abridged)Comment: 26 pages, uuencoded gunzip'ed latex + 16 postscrip figures, to be published in A
    • 

    corecore